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The magnetic relaxation effect on TEM responses 
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Abstract

Ungrounded horizontal loop transient responses of uniform conductive and magnetically viscous earth have been simulated using two
different codes. One algorithm employs the relationship between viscous magnetization and the magnetic flux it induces in the receiver loop.
In the other algorithm, the Helmholtz equation in a boundary-value problem is solved using the Fourier transform with frequency-dependent
magnetic permeability. The two solutions are identical for noncoincident loops but differ when the transmitter and receiver loops are closely
spaced (at 1 cm or less). In the latter case correct results are provided by the first code. The magnetic relaxation and eddy current responses
appear to be independent at conductivities typical of the real subsurface. Therefore, TEM responses of magnetically viscous conductors can
be computed using the superposition principle. Although transients change in an intricate way as a function of loop geometry and earth
parameters, these changes exhibit certain patterns which may be useful at the stages of exploration and TEM data processing. In configurations
where the receiver loop is laid outside the transmitter, the interaction of magnetic relaxation and eddy current decay causes sign reversal in
transients. This reversal occurs at late times after an earlier sign reversal due uniquely to eddy current.
© 2008, IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
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Introduction

Magnetic viscosity is a property of ferromagnetism. In
rocks it is associated with superparamagnetism, or magnetic
relaxation of ultrafine grains in ferrimagnetic minerals. Mag-
netic viscosity normally causes a much less effect on TEM
data than eddy current. There are, however, natural and
man-made objects in which the amount of superparamagnetic
particles is as great as to make the magnetic relaxation
response notable or even dominant over the conductivity-con-
trolled eddy current response. This is the effect that cannot be
ignored in data interpretation.

Magnetic viscosity is most often treated as geologic noise
that interferes with TEM responses to be interpreted in terms
of “normal” electrical conductivity (Buselli, 1982; Dabas and
Skinner, 1993; Lee, 1984a,b; Pasion et al., 2002; Zakharkin
et al., 1988; Zakharkin and Bubnov, 1995). On the other hand,
there is evidence that magnetic viscosity effects in TEM
measurements bear signature of genesis and structure of
natural and man-made materials and near-surface processes

(Barsukov and Fainberg, 1997, 2002; Kozhevnikov and Niki-
forov, 1996, 1999; Kozhevnikov and Snopkov, 1990, 1995;
Kozhevnikov et al., 1998, 2001, 2003). Therefore, it appears
reasonable to learn how to (i) amplify or damp the magnetic
viscosity response, (ii) image lateral and vertical magnetic
viscosity profiles in shallow subsurface, and (iii) interpret the
results in terms of rock physics and, possibly, magnetic
mineralogy.

For this purpose, special tools are required for mathematical
modeling of transient responses of magnetically viscous
ground, in addition to laboratory and field experiments. The
primary objective is to design forward modeling codes to be
complemented in the long run with inversion algorithms.

An important contribution to the modeling experience
belongs to T.J. Lee who derived analytical equations for
transient responses of a conductive superparamagnetic ground
(Lee, 1984b) and a thin superparamagnetic layer on top of a
conductive nonmagnetic ground (Lee, 1984a). As Lee re-
ported, the magnetic viscosity effect was stronger in coincident
than in separate loops, especially, in the case where the
superparamagnetic material was confined to a thin top layer
of the ground (Lee, 1984a). Lee also showed that the
coincident-loop transient response depended on the loop area
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as well as on the wire radius, and the wire-radius dependence
was more evident in loops on a superparamagnetic ground
(Lee, 1984a,b). Lee’s equations (1984 a, b) derived for circular
loops are critical for understanding the physics of superparam-
agnetism and are useful to predict the order of the expected
effects but they hardly can make the basis for appropriate
modeling.

Interest in the magnetic viscosity effect on TEM data has
recently been rekindled in applications of UXO (unexploded
ordnance) detection (Pasion et al., 2002). The models for UXO
detection simulated in-loop transient responses of magnetically
viscous materials obtained with a small circular receiver at the
center of a relatively small circular transmitter. With small
loop systems, the eddy current decay is usually so rapid that
it has died out before the first time gate. However, with large
square-loop systems in conductive terrain, which is a common
case of TEM surveys, the conductivity effect can produce a
pronounced response.

As far as we know, there has not been much literature on
mathematical modeling of TEM responses of magnetically
viscous ground. We failed to find publications that would
discuss different models and compare their performance at
different resistivity patterns and loop geometries. This model-
ing, however, will be an indispensable support to TEM
soundings of a superparamagnetic ground which can make
magnetic viscosity an inversion-derived parameter. We are
trying to somehow bridge the gap by this study using the
available literature on magnetic viscosity of rocks and our own
results, which were partly reported elsewhere in brief commu-
nications (Antonov and Kozhevnikov, 2003; Kozhevnikov and
Antonov, 2004).

Magnetic relaxation and its relation with induction
transients

Assume that a transmitter of DC current I has been on
indefinitely and the transmitter and receiver loops lie on
nonmagnetic ground (Fig. 1). In this case, the magnetic flux
Φ0 induced in the receiver loop is Φ0 = IM0, where M0 is the
coefficient of inductance between two loops on nonmagnetic
half-space.

If there is a magnetic object in the loop vicinity, the primary
magnetic field H1 charges its any elementary volume with the
magnetization J. The magnetized object induces the secondary
magnetic field H2 which adds ∆Φ to the initial magnetism
Φ0. Correspondingly, M0 changes for the value ∆M called
introduced inductance. It either amplifies or reduces the initial
inductance depending on loop geometry and magnetic suscep-
tibility of the ground. Measuring ∆M can give information on
the presence of a magnetic object and on its properties. The
inductance that bears the effect of one or several magnetized
objects (including magnetic half-space) is called effective
inductance (Me). It is convenient to write Me as

Me = µe M0, (1)

where µe is the effective relative magnetic permeability which

allows for the response of magnetic objects in the loop vicinity
and is µe = 1 in their absence. There is always such µe that

(1) fulfills exactly in the case of a horizontally uniform
magnetic earth; otherwise, (1) is approximate.

As the current is turned off instantly at time t = 0, the
primary magnetic field disappears immediately. Assume that
the conductivity of the object and its host is so small that eddy
current and the secondary magnetic field it induces decay
rapidly on a time scale of the experiment and cause no effect
on magnetization, but viscous magnetization decays slowly.
Magnetic relaxation excites synchronous secondary magnetic

field H2 which induces the voltage e(t) = − 
dΦ
dt

 in the receiver

loop.
In the case of single-loop or coincident-loop excitation and

measurement, the magnetic flux equation will include the loop
inductance L instead of the mutual inductance M.

Rock magnetism is often expressed via the magnetic
susceptibility κ instead of the permeability µ. In the SI system,
relative µ and κ are related as

µ = 1 + κ. (2)

Correspondingly, their effective counterparts are related as

µe = 1 + κe. (3)

Therefore,

Me = M0(1 + κe). (4)

The superparamagnetic decay on removal of the applied
magnetic field is slow, and µe, κe, and Me are thus time-de-
pendent. Then, the magnetic flux can be written as Duhamel’s
integral:

Φ(t) = I (t) Me (0) + ∫ 
−∞

t

I (τ) 
dMe (t − τ)

dt
 dτ.

Fig. 1. Layout of TEM measurement system and magnetic object.
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If the transmitter current I0 is turned off at t = 0, the
time-dependent current I in the loop is I(t) = I0[1 – 1(t)], where
1(t) is the unit Heaviside function. Then,

Φ(t) = I (t) M (0) + I0 ∫ 
−∞

t
dMe (t − τ)

dt
 dτ − I0 ∫ 

−∞

t

1(t) 
dMe (t − τ)

dt
 dτ. (5)

The first integral in the right-hand side of (5)

∫ 
−∞

t
dMe (t − τ)

dt
 dτ = Me (t) − Me (−∞)

obviously gives static effective inductance (Mes), i.e., the
inductance that sets up in an infinitely long time. The second
integral in the right-hand side of (5) is

∫ 
−∞

t

1(t) 
dMe (t − τ)

dt
 dτ = ∫ 

0

t
dMe (t − τ)

dt
 dτ = Me (t) − Me (0).

Inasmuch as viscous magnetization is zero at t = 0, Me(0) =
M0, i.e., effective inductance equals initial inductance. Thus,
(5) becomes

Φ(t) = I0 Ms − 1(t)I0 M0 − I0 Me (t),

while the voltage at the loop outputs is

e (t) = − dΦ
dt

 = δ(t)I0 M0 + I0 
dMe (t)

dt
,

where δ(t) is the Dirac delta function. Me(t) can be expressed
via the effective time-dependent magnetic susceptibility κe(t)
and the initial inductance M0 as

Me(t) = M0[1 + κe (t)].

Therefore,

e (t) = − dΦ
dt

 = δ(t)I0 M0 + I0 M0 
dκe

dt
.

There the first term is the voltage induced in the receiver
loop on the transmitter turn-off which bears no information
on magnetic viscosity. The current-normalized voltage induced
in the receiver by magnetic relaxation is

e (t)
I0

 + M0 
dκe

dt
. (6)

To use (6) in practice, one has to calculate M0 and specify
the model for κe(t).

Magnetic susceptibility of an ensemble 
of single-domain particles

An external magnetic field applied to a “normal” material
magnetizes it immediately, i.e., the applied field H and the
magnetization J are in phase and are related as J = κH, where
κ is time independent.

Magnetization of superparamagnetic materials is time-de-
pendent. For a magnetic field applied at t = 0, J(t) = κ(t)H,

where κ(t) is time-dependent magnetic susceptibility. J(t) is
often written as

J (t) = κ0 H [1 − P (t)], (7)

where κ0 is the static susceptibility and P(t) is the after-effect

function (Trukhin, 1973).
Magnetization of a single-domain grain has the relaxation

time τ = τ0 exp(KV/kT), where K is the anisotropy energy, V
is the particle volume, T is the absolute temperature, k is

Boltzmann’s constant, and, τ0 = 10−9 s (Neel, 1949). For a
particle or an ensemble of particles with the same time
constant, the after-effect function is P(t) = exp(−t/τ) (Trukhin,
1973).

Relaxation times associated with superparamagnetic behav-
ior of minerals in nature are in a range defined by the weight
function f(τ) also called the distribution function. Then, the
after-effect function is

P (t) = ∫ 
0

∞

f (τ) exp (−t/τ) dτ. (8)

The distribution of time constants in an ensemble of
single-domain particles with uniformly distributed energy
barriers between stable magnetization states is described by
the Fröhlich function (Fannin and Charles, 1995). The relaxa-
tion times τ in this function are in the range from τ1 to τ2:
τ1 ≤ τ ≤ τ2. Inside the range,

f (τ) = 1
τ ln (τ2 /τ1)

, (9)

and outside it f(τ) = 0.
If the argument of (9) is ln τ, the Fröhlich function becomes

G(ln τ) = 
1

ln (τ2 /τ1)
, whence the relaxation times are uniformly

distributed between τ1 and τ2.
Substituting (9) into (8) gives

P (t) = 1
ln (τ2 /τ1)

 ∫ 
τ1

τ2

exp (−t/τ)
τ

 dτ. (10)

The exact values of τ1 and τ2 are commonly unknown but
this is of no significance in actual measurements. The range
of time constants normally covers many orders of magnitude
while magnetic relaxation is measured at τ1 <<  t <<  τ2. Then,
the after-effect function is (Fannin and Charles, 1995)

P (t) = 1
ln (τ2 /τ1)

 (−γ − ln t − ln τ2),

where γ ≈ 0.577 is the Euler constant. Substituting (10) into
(7) gives that the magnetization of a ground excited by a step
external field increases proportionally to the logarithm of time:

J (t) = 
κ0H

ln (τ2 /τ1)
 [1 + A + ln t],

where A = γ + ln τ2. Dividing both sides of the equation by H

gives the time-dependent susceptibility
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κ(t) = 
κ0

ln (τ2 /τ1)
 (1 − A + ln t). (11)

Note. The time-dependent susceptibility is meant in this
study as a response to magnetic field turn-on and can be thus
denoted κon(t). This is an increasing time function. In some
publications, it may correspond to a turn-off response and
denoted κoff (t). Obviously, κoff (t) = κ0 − κon(t).

Susceptibility of superparamagnetic materials was shown
to be complex and frequency-dependent (Worm, 1999). In the
frequency domain, the susceptibility of an ensemble of
single-domain grains with their time constants satisfying (9)
is given by (Fannin and Charles, 1995; Lee, 1984a,b; Trukhin,
1973)

κ∗(ω) = κ0 

1 − 1

ln (τ2 /τ1)
 ⋅ ln 

(1 + jωτ2)
(1 + jωτ1)




 , (12)

where j = √−1 , ω is the angular frequency.
The susceptibility of the form (12) approaches the static

κ0 at low frequencies and tends to zero at high frequencies.

At frequencies 1/τ2 < ω < 1/τ1, the real component κ∗(ω)
decreases proportionally to the logarithm of frequency and the
imaginary component is frequency-independent (Fannin and
Charles, 1995).

Uniform earth: effective permeability 
and transient response

Below we derive the equation for the transient response of
a uniform conductive earth that also exhibits magnetic viscos-
ity.

The inductance between two loops laid on a uniform
ground with the relative permeability µ, as well as the
inductance of each loop, increase by a factor of 2µ/(µ + 1),
i.e., the effective (µe) and true (µ) relative permeabilities of a
uniform half-space are related as (Spies and Frischknecht,
1991)

µe = 2µ
µ + 1

 . (13)

Taking into account (2), (3) and (13), it is easy to show
that the effective susceptibility κe of a uniform half-space is
related to its true susceptibility κ as κe = κ /(κ + 2).

For most geological conditions, κ <<  1, and κe = κ / 2.
The effective permeability of a ground with time-dependent

susceptibility is likewise time-dependent, i.e., κe(t) = κ(t)/ 2,
and, according to (6),

e (t)
I0

 = 
1
2
 M0 dκ(t)

dt
.

With regard to (11), it becomes

e (t)
I0

 = 
M0

2
 

κ0

ln (τ2 /τ1) t
 
1
t
. (14)

In order to use (14) for estimating the transient response
of a uniform magnetically viscous ground, one has to calculate

M0 (L0 for single-loop or coincident-loop configurations) and
to set the static susceptibility κ0 and the τ2 /τ1 ratio.

Inversion becomes possible when measured transients are
available. In (14) e(t) is a measured value and M0, I0, and t
are the derived values. Solving (13) with respect to κ0 gives

κ0 = 2
M0

 ln 




τ2

τ1




 e (t)

I0
 t . (15)

Thus, measuring e(t) can give κ0. The susceptibility κ0

equals the true static susceptibility in a uniform half-space and
is an effective parameter in a nonuniform half-space, where it
can be reasonably called apparent static susceptibility.

Note. The susceptibility κ0 of a uniform half-space and the
apparent static susceptibility of a nonuniform half-space are
controlled by the logarithmic τ2 /τ1 ratio in (14) and (15).
Therefore, when reporting the results, one has to specify which
τ2 and τ1 have been used in forward modeling or in inversion.

Algorithm based on the Fourier boundary-value
solution

We consider a layered earth with the conductivities σ1, ...,
σi, ..., σN, permeabilities µ1, ..., µi, ..., µN, and the layer
interfaces at z1, ..., zi, ..., zN, in the Cartesian coordinates xyz,
where z is directed downward. The field of an arbitrary point
source in a layered subsurface can be found from the spatial
Fourier images of its vertical components (Tabarovsky, 1975).

A model loop system consists of horizontal electric dipoles
placed along the contour of the transmitter loop. The voltage
e(t) induced in the receiver loop Lr = Lr(r) on the removal of
the transmitter field (Lt = Lt(r0) is found by double integration:

ε = I ∫ο
Lt

 ∫ο
Lr

 E (IdIt, |r0 − r|) dlr dlt,

where I is the current, E(IdIt, |r0 – r|) is the field of the electric
dipole with the moment IdIt located at the point r0 = (x0, y0,
z0) of the transmitter loop Lt and measured at r = (x, y, z) of
the receiver loop Lr. The transients generated by an inductive
loop system can be calculated with regard to only the magnetic
mode of the electrical point sources. The corresponding
frequency-domain components of the electric field are given by

IxEx = 
iωµ0I

4π
 
∂2

∂y2
 ∫ 
0

∞

f (u, ω, z, z0) J0(u|r − r0|) u du, (16)

IxEy = IyEx = 
iωµ0I

4π
 
∂2

∂x ∂y
 ∫ 
0

∞

f (u, ω, z, z0) J0(u|r − r0|) u du, (17)

IyEy = 
iωµ0I

4π
 
∂2

∂x2 ∫ 
0

∞

f (u, ω, z, z0) J0(u|r − r0|) u du. (18)

There u = √kx
2 + ky

2 , kx, ky, where kx and ky are the Fourier

images of the spatial frequencies along the horizontal coordi-
nates and J0 is the zero-order Bessel function of the first kind.
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The components of the randomly oriented source are expressed
using a set of trigonometric functions. The integrand function
f (u, ω, z, z0) governs the field dependence on the earth
parameters, including σ, µ, the interfaces (z1, z2, ..., zN – 1),
the source and receiver depths z0, z, and the frequency ω. The
loop geometry is included in the Bessel function argument.

The function f (u, ω, z, z0) is found using the recurrent
formulas (Tabarovsky, 1979):

αN = 0,

βj − 1 = 
µj

µj − 1
 
pj − 1

pj
 
αj + 1

αj − 1
 ,

Rj − 1 = 
1 + βj − 1

1 − βj − 1
 ,

αj − 1 = − e−2pj − 1(zj − 1 − zj − 2) Rj − 1 ,

 j = N, ..., 2, pj = √u2 + kj
2 , kj

2 = − iωµj σj, σj is the conductiv-

ity and µ = µ(ω) is the complex permeability. After p1 and R1
have been found, the function f (u, ω, z, z0) is obtained as

f (u, ω, z, z0) = − e
−p

1
(2z

1
 + z

0
 − z)

2p1
 R1 + e

−p
1
|z − z

0
|

2p1
.

Integrals (16)–(18) are calculated using special spline
interpolation quadratures, and the quadrature coefficients for
point sources are found once and saved in a special file. For
an arbitrarily configured system, it is enough to integrate the
quadrature coefficients for a point source. This approach
speeds up computing the TEM responses for arbitrary loop
geometries.

Software summary

The Unv_QQ program designed by E.Yu. Antonov in
FORTRAN implements the above algorithm. It is applicable
to compute the transient responses of magnetically viscous
layered conductors for any rectangular-loop system. In addition
to loop geometry and layer parameters, the user can specify
the loop height above the earth surface. The magnetic viscosity
effects are included using the frequency-dependent complex

permeability µ∗(ω) = µ0[1 + κ∗(ω)], where µ0 = 4π⋅10−7 H/m

is the vacuum permeability, and κ∗(ω) is the susceptibility
defined by (12).

The MVIS program designed by N.O. Kozhevnikov in the
MATHCAD environment is used to compute transients with
magnetic relaxation using equation (6) for the following loop
configuration and earth models:

— loops of any geometry, uniform earth;
— circular coincident loops, two-layer earth;
— circular or square noncoincident in-loop system, layered

earth with any number of layers.
Equation (6) was derived assuming a low-conductive

subsurface in which eddy current decays very rapidly and,
hence, causes no effect on the magnetic relaxation response.
This may seem to be a limitation for MVIS making it restricted

to high-resistivity, actually zero-conductivity, terrains. How-
ever, we show below that the eddy current and magnetic
relaxation responses are independent in the conductivity range
of real earth.

Time-dependent inductance and numerical method:
comparing two approaches

At the first stage of the reported numerical experiments we
compared the transients computed by the Unv_QQ and MVIS
codes for the same loop systems and earth models. The results
turned out to be identical for in-loop but different for
coincident-loop transients.

To understand the cause of this difference, we computed
in-loop transients for a system with a receiver loop of a side
length varying from 90 to 100 m placed inside a 100-m
square transmitter loop, i.e., a noncoincident-loop configura-
tion graded into a coincident one.

We used a uniform earth model with a resistivity ρ =
106 Ohm⋅m and κ0 = 10−3 SI units. At this resistivity the effect
of fast-decaying eddy current is vanishing relative to the
magnetic relaxation response. It was assumed, both in calcu-

lation by (14) and in numerical experiments, that τ1 = 1⋅10−6 s,

τ2 = 1⋅106 s, and delay times between 10 µs and 100 ms, i.e.,
τ1 <<  t <<  τ2.

The inductance M0 between the square loops was found
using numerical integration of (3.12) from (Nemtsov, 1989).
The loop inductance L0 for coincident-loop transients was
obtained with the equation from (Zimin and Kochanov, 1985,
p. 163).

See the e1/e2 curves computed using MVIS and Unv_QQ
in Fig. 2, where e1 and e2, respectively, are current-normal-
ized. The two solutions diverged notably when the receiver
loop became in close proximity of the transmitter (at about 1
cm). As they further approached one another, the e1/e2 ratio
increased to become 1.9 in the limit, when the two loops
coincided. The e1/e2 ratio turned out to be independent of time
delay within the range from 10 µs to 100 ms.

Inasmuch as the two solutions were identical at loop
spacing over 1 cm, we reasonably supposed that both ap-
proaches drove at the correct result, taking into account that
they based on different methods.

What happens when the loops become closely spaced? See
Fig. 2, b for the M0 behavior of two square loops centered on
the same point. The size of the outer loop remains invariable
(100×100 m) while the inner loop grows from 1×1 m to
100×100 m, and M0 increases proportionally to the loop area.
As the loops approach one another, M0 grows ever more
rapidly and reaches its maximum when they coincide. Then,
M0 becomes L0 of the 100-m loop which, unlike M0, depends
on both the loop size and the wire thickness. At a wire radius

of 2 mm, L0 = 8.24⋅10−4 H. Then, M0 reaches half the L0 when
the receiver loop is 99.5×99.5 m. To put it different, induc-
tance between the two loops becomes half the maximum value
when they are spaced at only 25 cm.
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According to (14), the magnetic relaxation response is
proportional to the initial inductance M0 of the transmitter and
receiver loops. M0 grows rapidly when the loops approach to
a distance of a few centimeters and less (Fig. 2, b) and is the
greatest in coincident loops. Therefore, coincident-loop sys-
tems are the most sensitive to magnetic viscosity.

The voltage induced in the receiver loop by eddy current
is proportional to inductance between the receiver and the
ground eddy current which can never coincide with the
transmitter loop in any conditions. Eddy current diffusion can
be illustrated by an equivalent current smoke-ring that grows
in size and in depth (Nabighian, 1979). There is inductance
between any two elementary ring filaments controlled by their
size and position and by the ground magnetic properties. This
interaction and, hence, the ground magnetic properties, are
taken into account in the Unv_QQ solution. However, the eddy
current maximum is far from the loop wire already at the
earliest times. Therefore, the Unv_QQ solution does not include
magnetization of ground in the immediate loop vicinity.

Results and discussion

Having explored the potentialities and the limitations of the
two approaches, we discuss some results that may be useful
in exploration and in processing the TEM responses of a
magnetically viscous ground.

Figure 3 shows noncoincident-loop transient responses of
a uniform earth measured with a 50-m square receiver inside
a 100-m transmitter. First we computed the eddy current
induced voltage e1(t)/I assuming ρ = 10, 102, and 103 Ohm⋅m,
κ0 = 0 (no magnetic viscosity).

Then we found the magnetic relaxation response e2(t)/I

assuming κ0 = 0.001 and the resistivity ρ = 106 Ohm⋅m at
which eddy current decays so fast that the transient is
controlled uniquely by magnetic viscosity.

Finally, we obtained the total response of eddy current plus
magnetic relaxation. See the eΣ(t)/I = e1(t)/I + e2(t)/I curves in
Fig. 3, together with the e(t)/I curves computed using Unv_QQ
with regard to eddy current–magnetic relaxation interaction,

at κ0 = 0.001, ρ = 10, 102, and 103 Ohm⋅m. The eΣ(t)/I and
e(t)/I curves coincide, which proves the independence of the
magnetic relaxation and eddy current responses (Kozhevnikov
and Snopkov, 1990, 1995). Therefore, the superposition
principle is applicable to computing and interpreting transients
of magnetically viscous conductors.

The resistivity ρ in early-time transients controls the eddy
current response (Fig. 3) while at late times the curves follow
the asymptote corresponding to the magnetic relaxation re-
sponse. The higher the resistivity the earlier the time when
the curves turn to and reach the asymptote. The transient
process in nonconductive earth is obviously controlled
uniquely by its magnetic viscosity. The decay of magnetization
is 1/t, i.e., is much slower than in the eddy current response.
The magnetic viscosity effect shows up in the behavior of
apparent resistivity (ρτ) derived from the transients (Fig. 4) as
a continuous ρτ fall-off to the 1/t asymptote. The higher the
resistivity, the earlier the fall-off becomes notable.

Fig. 2. e1/e2 ratio (a) and inductance M0 between outer (1) and inner (2) loops (b) as a function of inner loop size.

Fig. 3. 100×50 m in-loop transient responses of uniform earth: approximate and
exact solutions. Figures on curves are resistivities in Ohm⋅m. For all models,
κ0 = 0.001 SI units.
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It is essential to figure out how the magnetic viscosity effect
depends on the loop geometry and size in TEM soundings of
a ground that may be superparamagnetic. Figure 5 shows

in-loop transient responses of a uniform earth with ρ =
103 Ohm⋅m, κ0 = 10−3 SI units, τ1 = 10−6 s, τ2 = 106 s. The
transmitter loop side varied from 10 to 103 m and the receiver
was always 10×10 m.

As the loop size increased, the eddy current effect increased
as well but the magnetic viscosity effect decreased (Fig. 5, a).
Mind that the magnetic relaxation response is proportional to
the transmitter-receiver inductance. At an invariable receiver
size, this induction is the greatest when the loops coincide (see
Fig. 5, b for the corresponding apparent resistivity curves).
Therefore, the magnetic viscosity effect can be highlighted by
using small coincident loops and damped, if unwanted, in
noncoincident loop transients, with a small receiver inside a
large transmitter.

If we assume that the inductance is positive (M0 > 0) for
a receiver inside a transmitter, it will be negative (M0 < 0) if
the receiver is placed outside the transmitter (Nemtsov, 1989).
The magnetic viscosity-controlled transient has the same sign
as a “normal” transient in the former case and there is a sign
reversal in the latter case (Fig. 6, a). The system of Fig. 6, a
consists of a 50-m square receiver loop placed outside a 100-m
square transmitter loop, at a distance of 80 m between the
loop centers; the loops lie on a uniform ground with ρ =
103 Ohm⋅m and κ0 = 10−3 SI units. See a sign reversal at about
1 ms caused by interaction of eddy current decay and magnetic
relaxation (Fig. 7). When the transmitter is on, it produces a

Fig. 4. Apparent resistivity curves for 100×50 m in-loop configuration, uniform
earth. Figures at curves are resistivities in Ohm⋅m. For all models, κ0 = 0.001 SI
units.

Fig. 5. In-loop transients (a) and apparent resistivity curves (b), uniform earth (ρ = 103 Ohm⋅m, κ0 = 0.001 SI units). Receiver loop is 10×10 m in all cases; transmitter
loop is 1000×1000 m (1), 100×100 m (2), 20×20 m (3), and 10×10 m (4).
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primary magnetic field that causes the magnetization J in
rocks. In an isotropic earth, at κ0 <<  1, the direction of this
magnetization follows that of the primary transmitted field at
any point of the subsurface.

The removal of the transmitter field launches two proc-
esses: magnetic relaxation and eddy current decay. Magnetic

relaxation is simultaneous at all points of the subsurface, i.e.,
the magnetization ratio of any two points remains invariable.
This ratio is defined by the transmitter field and earth’s
κ0(x, y, z) patterns. See that the secondary magnetic field
always aligns with the primary field everywhere at the ground
surface (Fig. 7).

An eddy current response illustrated by an equivalent
current smoke-ring (Nabighian, 1979) is as follows. First it
occurs under the transmitter loop and is approximately of the
same size, and the magnetic field it induces inside (point 1)
and outside (point 2) the transmitter aligns with the primary
field. With the time on, the ring diffuses laterally and
depthward, and once it grows to the size when the surface
projection of the current line falls at point 2, the magnetic
field induced by eddy current changes its polarity. (In our
case, the sign reversal occurs at less than 10 µs and is beyond
the transient of Fig. 6.)

The field eddy current induces around point 2 is greater
than the superparamagnetically induced field of opposite
direction. However, the field induced by the current ring at
point 2 decreases as the eddy current diffuses down and
laterally decaying by heat loss. Inasmuch as magnetic relaxa-
tion is much slower than the decay of eddy current, its field
will exceed that of eddy current since some moment of time.
That is the point of sign reversal of the total field which keeps
decaying to finally reach its minimum; then it decays to zero
remaining negative. The transient experiences sign reversal at
the point when the total field is minimum and then remains
negative decaying further as 1/t (Fig. 6, a).

Above we mentioned that in noncoincident loop configu-
rations M0 > 0 when the receiver is inside the transmitter and
M0 < 0 when it is laid outside. Thus, there always must be a
receiver position corresponding to M0 = 0 (Nemtsov, 1989),
i.e., the magnetic viscosity effect becomes eliminated in a
magnetically uniform earth. Inasmuch as TEM measurements

Fig. 6. Noncoincident-loop transient response of uniform earth (ρ = 103 Ohm⋅m,
κ0 = 0.001 SI units). The centers of a 100-m square transmitter loop and a 50-m
receiver loop are spaced at 80 m. See sign reversal from positive (1) to negative (2).

Fig. 7. Transmitter loop on ground surface, its primary magnetic field, and equivalent current ring. Magnetic relaxation and its secondary field are along primary field
at any point of ground surface.
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are most often taken at late times, the displacement of the
transmitter loop causes no influence on the eddy current
response.

Conclusions

Due regard for magnetic viscosity of the ground is a topical
problem in TEM surveys. We modeled the magnetic relaxation
effect on transient responses of uniform earth with two
algorithms. One code employed the relationship between
viscous magnetization and the magnetic flux it induces in the
receiver loop. This is a simple solution, easy to illustrate
physically, but it is not rigorous as it neglects interaction
between eddy current and magnetic relaxation.

The other algorithm was based on the numerical solution
to the Helmholtz equation taking into account the eddy
current–magnetic viscosity interaction. Transient responses
computed with the two codes for the same loop configurations
and earth models were identical if the transmitter and receiver
loops were spaced at more than a few centimeters but differed
when the spacing reduced to 1 cm and less. Therefore, both
methods provided correct results for noncoincident-loop con-
figurations while the former algorithm was more workable in
the case of coincident loops. The magnetic relaxation and eddy
current responses were shown to be independent at conduc-
tivities common to the real subsurface. Therefore, TEM
responses of magnetically viscous conductors can be computed
using the superposition principle. Transient responses of a
magnetically viscous conductive earth changed in an intricate
way as a function of loop geometry and earth parameters but
the changes exhibited certain patterns which may be useful at
the stages of exploration and TEM data processing

In noncoincident loop configurations, with a receiver
outside the transmitter, the interaction of magnetic relaxation
and eddy current decay caused sign reversal in transients. The
reversal occurred after an earlier sign reversal due uniquely
to the eddy current decay.

The manuscript profited much from the thoughtful review
and constructive criticism by G.M. Morozova and the anony-
mous reviewer. 
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