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Abstract

The harmonic electromagnetic field of a vertical magnetic dipole above an anisotropic half-space has been simulated using a forward
algorithm for layered conductive media with inclined anisotropy. Inclined anisotropy has been found out to change the typical behavior of
frequency and transient responses. Qualitative interpretation of FD loop–loop responses of a conducting earth with inclined anisotropy requires
taking into account the receiver azimuth dependence of apparent resistivities. In the case of time-domain measurements, this dependence is
absent but the apparent resistivities are higher at late times.
© 2010, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
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Introduction

Anisotropy of rocks is almost never taken into account in
processing surface induction logging data. Yet, there are many
rocks to be described in terms of conductivity anisotropy. They
are, for instance, fractured rocks or thinly layered gas and oil
reservoirs (Rytov, 1955). Anisotropy  obviously shows up in
acoustic, permeability, and geoelectric properties of rocks.
Thinly layered reservoirs are low permeable across the layer
boundaries and can be simulated with a uniaxial conductivity
tensor (Tabarovskii and Epov, 1977; Tabarovskii et al., 1977).
As a consequence of various geological effects, the normal to
the boundaries of anisotropic layers can deviate from the
normal to the bedding planes. Then, a formation of this kind
will no longer fit the layered model with a transversely-iso-
tropic conductivity tensor. The respective problem formulation
and a frequency-domain solution for logging applications were
first suggested in (Tabarovskii and Epov, 1979) and the
simulation results were reported in (Fedorov and Epov, 2003).

When neglected in resistivity data processing, anisotropy
effects can distort the results considerably. On the other hand,
progress in acquisition and processing techniques can make

the resistivity survey an efficient tool to investigate the
structure of formations. Eventually, studying anisotropic ef-
fects on conductivity can stimulate advance in resistivity
surveys and expand the scope of their applications. 

In order to highlight the effects that are associated with
anisotropy of rocks, we simulate the electromagnetic field with
a simple model of a vertical magnetic dipole (VMD) over an
anisotropic earth. The vertical magnetic dipole is a good
source model being of broad use in both frequency induction
(FI) and transient electromagnetic (TEM) practice. We explore
the sensitivity of the commonly measured field components
(the normal and radial components of the magnetic field and
the azimuthal component of the electric field) to the conduc-
tivity anisotropy of a halfspace at different receiver azimuths.
This problem formulation can provide clues to the effect of
conductivity anisotropy on resistivity survey data.  

Forward model

Thus, we simulate the effects associated with conductivity
anisotropy using a simple but appropriate geoelectirc earth
model. The two halfspaces of the model space are air and an
anisotropic conductive earth separated by a plane interface.
The anisotropy tensor is transversely isotropic along the
principal axes but its axis is inclined at an arbitrary angle (δ)
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relative to the normal to the air-earth interface. Let the z and
x axes in the Cartesian coordinates coincide, respectively, with
the normal to the air-earth interface and with one principal
axis of the conductance tensor (Fig. 1). The azimuth is counted
in the positive direction from the x axis. Let a point source
of the electromagnetic field in the form of a harmonic vertical

magnetic dipole, with its moment M = Mez e
−iωt where ez is

the unit vector along z, be located on the z axis at the height
z0 above the earth surface. For the TEM field solution, one
has to obtain the frequency dependence of the moment and to
apply the time-domain Fourier transformation. The conduc-
tance tensor in the selected coordinates is
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where γx, γz are the longitudinal and transversal conductances,
respectively, and δ is the angle between the tensor axis and
the normal to the air-earth interface (Tabarovskii and Epov,
1979). Hereafter we employ the conductivity tensor which is
derived by simple inversion from the conductance tensor. This
is convenient for comparing apparent resistivities with the
tensor parameters in the two different methods.  

The FI problem is solved on the basis of Maxwell’s
equations for an anisotropic medium in a quasi-stationary
approximation: 

rot H = j,

rot E = iωµ0H,

div H = 0,  div j = 0.

(2)

where the current density is related to the electric field through
the Ohm law: 

ji = σij Ej.

The boundary conditions at the air-earth interface imply
continuity of the tangential components of the electric and
magnetic fields (brackets mean a jump): 

[Ex]z=0 = 0,   [Ey]z=0 = 0,

[Hx]z=0 = 0,   [Hy]z=0 = 0.
(3)

Having applied the 2D Fourier transform along x and y and
some algebraic transformation, we reduce the Maxwell equa-
tions to the linear system of ordinary differential equations
(Tabarovskii and Epov, 1979) for each layer
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In these equations, λ2 = ξ2 + η2, A = 
λ2 + kxx

2
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 (kxx
2  − kyy

2 ),

kij
2 −iωµ0σij, ξ and η are the Fourier variables and Ex

∗, Ey
∗ are

the 2D Fourier images (asterisked hereafter) of the respective
components of the electric field. The vector Q is defined by
the source configuration. 

The sought solution can be written using the general
solution for the electromagnetic field of a harmonic vertical
magnetic dipole for each halfspace after applying boundary
conditions (3). 

Not going far into derivation details, we present only the
final solution for a source located in the upper nonconducting
halfspace (air). For the sake of convenience, we separate the
variables that contain the angle of the inclined anisotropy axis:
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where 
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Fig. 1. Model of a conducting earth with inclined anisotropy. 
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The parameters of the magnetic field H ± are found in the

same way as E ± with equation (5) by the simple substitution

E ± → H ±, Ex,y
 ∗  → Hx,y

 .  Thus one can find all field compo-

nents in the space of Fourier images using (3), (4) and (5)–(7).
The frequency-domain coordinate dependences are derived

by means of 2D Fourier inversion along ξ, η with exact

quadratures with the specified weight function (exponent of
an imaginary argument). 

In the same way, the solution for quick turn-off TEM
responses is obtained, having the computed frequency depend-

Fig. 2. FI responses of transversely isotropic and anisotropic halfspaces for commonly measured electric components. 1, transversely isotropic earth; 2–4, anisotropic
earth, with inclined anisotropy at δ = 40°, for receiver azimuths of 0°, 45°, and 90°, respectively. See text for explanation.
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ence, with a numerical algorithm of frequency-domain 1D
Fourier inversion (Tabarovskii and Sokolov, 1982).

Modeling frequency responses

 The frequency responses of an anisotropic earth with
inclined anisotropy are compared with those of a transversely
isotropic earth using the following model. The conductivity
tensor in both cases is the same in the principal axes and its
eignevalues are ρx = 50 Ohm m and ρz = 150 Ohm m (longi-
tudinal and transverse resistivities, respectively). The principal
tensor axis is inclined at δ = 40°. The model configuration
consists of a vertical magnetic dipole raised at the height
z0 = 1 m above the earth’s surface and a receiver which
measures any wanted component of the electromagnetic field,
the transmitter and the receiver being spaced at r0 = 20 m. 

Consider frequency responses in the case of different
receiver azimuths. Figure 2 presents frequency responses for
the classical set of measured components of the electromag-
netic field: Eϕ, Hr, Hz (Fig. 2, a, b, c, respectively). There are
plots for both real and imaginary parts of the total field
components (labeled Re and Im, respectively). In order to
highlight the anomalous behavior of the field, the respective
transversely isotropic and anisotropic earth responses are given
together. Hereafter the field components are normalized in a
way which (unlike the standard normalization) has turned out
to be the most convenient for the simulation: 
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The magnetic field curves remain almost unaffected by the
presence of inclined anisotropy: they are similar qualitatively
being different only in maximum amplitudes and in the
position of their extremes. The vertical component Hz shows
no difference for different azimuths, like the radial component
Hr for the receiver azimuths 0° and 90°. The receiver azimuth
of 45° (as well as any other angle from 0° to 90°) is
intermediate because the current lines are in this case nonor-
thogonal to the radial direction of the receiver (Fig. 2, b).

The azimuthal component of the electric field (Fig. 2, a)
is the most sensitive to both inclined anisotropy and receiver
azimuth. The most striking feature is the presence of a nonzero
component of the normalized electric field in the low-fre-
quency bandwidth (beginning with direct current). This is
actually a consequence of an induced surface electric charge
that acts as a secondary galvanic source. The change being
qualitative, this curve is impossible to process with the
classical techniques. 

One can calculate low-frequency apparent resistivities for
different field components as functions of the receiver position
and of the conductance tensor angle using known asymptotic
formulas. Figure 3 shows azimuth-dependent apparent resis-
tivities derived from the imaginary part of the vertical
magnetic component at a point of the x axis, for different
angles of the inclined conductance tensor axis. The source

frequency is f = 1 kHz. The conductance tensor in principal
axes is the same as in the previous model. 

Note that the apparent resistivity decreases slightly as the
dip of the conductor tensor increases when the receiver is
located on the x axis and reaches its maximum when the
receiver is on the y axis. In the model with the anisotropy

coefficient Λ2 = ρz / ρx = 3, the maximum apparent resistivity
is more than three times the minimum value. 

Modeling transient responses

Transient responses of an anisotropic earth with an inclined
conductance tensor appear to have virtually no literature. We
report simulation results for the TEM field of a vertical
magnetic dipole above an anisotropic earth, with the parame-

Fig. 3. Apparent resistivity in a VMD–VMD system as a function of receiver
azimuth at different angles (δ) of inclined conductor tensor axis. 

Fig. 4. Loop–loop (dipole approximation) transient responses of transversely
isotropic and anisotropic halfspaces for different receiver azimuths. Curve sym-
bols same as in Fig. 2.

320 M.I. Epov et al. / Russian Geology and Geophysics 51 (2010) 317–321



ters same as in the FI problem. As in the previous case, the
field is measured at three points of different azimuths but at
the same distances from the source. Measured is the voltage
induced in the receiver loop by the vertical component of
magnetic flux.

Figure 4 shows time dependences of the transient responses
of an anisotropic earth for three receiver azimuths and a
response of a transversely isotropic earth.

At late times all anisotropy-affected responses show asymp-
totic behavior which differs from that of the transversely
isotropic case. Conversion of voltage into apparent resistivity,
with the known asymptotic formula, gives a pattern as in
Fig. 5. Apparent resistivities derived from all responses tend
to the 63 Ohm m asymptote being more than 25% in excess
of the exact resistivity of 50 Ohm m.

In this respect two features of the transient responses of an
anisotropic earth are worthy of note. First, they show no
qualitative difference from the responses of an isotropic earth:
they likewise pass once through zero and decay in the same
way at late times. Second, the obtained resistivity is azimuth
independent. Thus, this source configuration cannot ensure
discriminating between anisotropic and isotropic media at late
times. On the other hand, such a possibility does exist in a
large time range if the responses are measured at different
receiver azimuths, because the signals differ significantly at
early times. The difference is, namely, in the time of the
passage through zero.

Conclusions

Simulation of the VMD responses of an anisotropic earth
shows that inclined anisotropy causes little effect on the
qualitative behavior of FI and TEM curves. However, proc-
essed data of surface resistivity surveys can differ strongly
from the expected results in the case of an isotropic-earth
reference model, and this discrepancy is not always cancelled
in measurements at varied receiver azimuths. Processing
near-field TEM data without due regard for anisotropy can
lead to wrong resistivities which are virtually independent of
the receiver azimuth.

The reported results can make basis for a low-frequency
acquisition technique to measure the total anisotropy tensor.
The required loop configuration is the same as in the classical
method and consists of a VMD transmitter and a receiver laid
at a varied azimuth, the latter being the only specific
modification. Thus obtained responses bear evidence for the
presence of conductance anisotropy. The use of the TEM
method for this purpose is inefficient at late times but is
informative at early times. To correct for the ambiguity, one
can apply additional measurements of the vertical component
of the electric field which appears uniquely in the presence of
an induced surface charge and reflects the field symmetry. The
latter fact rules out data distortion from finite- size anomalies.

Thus, the study highlights the importance of multi-compo-
nent electromagnetic surveys, especially in areas with potential
conductance anisotropy of rocks.

The study was supported by grant no. 07-05-00663 from
the Russian Foundation for Basic Research.
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Fig. 5. Voltage-derived apparent resistivities for different receiver azimuths.
Curve symbols same as in Fig. 2.
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