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Wave transforms of transient electromagnetic field in conductive earth
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Abstract

The study aims at finding a stable method for transformation of time-domain electromagnetic diffusion field to an electromagnetic wavefield.
Two ways of transformation are considered: singular-value decomposition (SVD) and Tikhonov’s regularizations. Transformation is applied
to TEM responses of a conductive half-space, a conductive S film, and to a series of horizontally layered models. The wave transforms are
used to plot travel-time curves and to estimate the velocity of EM field propagation.
© 2017, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
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Introduction

The use of transient electromagnetic soundings since the
late 1950s–early 1960s, first in the far-field (Van’yan, 1963)
and then in the near-field (Kaufman and Morozova, 1970)
modifications, has contributed a lot to progress of resistivity
surveys. A similar method based on the transient process came
in use in mineral exploration (Kamenetsky, 1997). The theory
of transient electromagnetic fields was developed, for instance,
in studies by Van’yan (1965) and Sheinmann (1969). The
transmitters of TEM signals have the form of current loops or
grounded lines (not considered in this paper). The turn-off of
transmitter current at some time induces eddy currents in
conductive subsurface according to the Farady law, in the
quasi-stationary approximation (Kaufman and Morozova,
1970). The eddy currents propagate depthward and decay at
rates controlled by energy loss and earth’s resistivity, which
allows discriminating between conductive and resistive rocks.
The data acquissition system records electromotive force
(voltage) induced in the receiver loop or the potential
difference between closely spaced receiver electrodes (not
considered below). Thus, TEM systems most often consist of
a transmitter and several receiver loops of which one is placed
in the center of the transmitter (central-loop configuration)
while others may lie either inside or outside the transmitter

loop. Each receiver records time-dependent voltage decay
(TEM responses). For convenience of analysis, the measured
values are converted into apparent values of resistivity ρτ,
conductivity sτ and depth hτ (Sidorov, 1985). The measured
data are inverted to parameters of rocks, but inversion is a
labor-consuming process, even with reference to a simple
horizontally layered starting model, especially if multiple
sources and receievrs are used. 

The gained experience of TEM data processing and
interpretation, as well as success in seismic exploration, have
demonstrated that imaging the true resistivity structure of the
subsurface requires using greater number of receivers and
transmitters. In this respect, systems of seismic surveys, with
a bunch of regularly arranged receivers recording responses
to a single shot, can be used as example. A similar system for
TEM surveys considered in this paper may comprise a square
transmitter loop and multiple equally spaced receivers placed
along a line, with the first receiver centered at the transmitter
center (central-loop configuration). Thus acquired data can be
processed and interpreted in the same way as seismic data
(Nekut, 1994; Virieux et al., 1994; Yu and Edwards, 1997).
Propagation of waves from seismic and electromagnetic
sources is described, respectively with the wave equation and
with the equations of diffusion or thermal conductivity,
assuming quasi-stationary conditions (Kaufman and Moro-
zova, 1970). Therefore, the use of processing techniques
similar to those in seismic surveys requires transformation of
the diffusion EM field into the wave field (Lee et al., 1989;
Zhdanov and Frenkel, 1983).
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This transformation is possible by mapping the space of
the diffusion equation solutions onto that of wave equation
solutions using the Laplace transformation (Kunetz, 1972;
Reznitskaya, 1974; Weidelt, 1972). However, the numerical
implementation of the approach is problematic because of
instability and uncertainty. Instability is caused by the expo-
nential kernel of the Laplace transform and can be overcome
by regularization with various methods. For instance, Lee and
Xie (1993) apply ray tomography to low-frequency Controlled
Source ElectroMagnetic (CSEM) data by transforming a
diffusive EM field to a wavefield defined in a time-like
variable mathematically using singular-value decomposition.
This approach leads to some useful results, but the obtained
wave signals oscillate strongly and are unfit for processing by
the methods for seismic data. Levy et al. (1988) provide the
stability of the transform by minimizing the linear program-
ming norm L1. Other attempts to acvhieve stability in
transforming the solutions for diffusive fields into those for
wavefields (Gershenson, 1997; Gibert and Virieux, 1991; Slob
et al., 1995; Wilson, 1994) mainly use field decomposion into
implusive functions which can be transformed analytically. All
these methods stem from numerical stability and take no
acccount of the desirable physical properties of the resulting
wave transforms. Regularization of integral transformation
was considered in detail by Swidinsky (2011) who applied
Tikhonov’s SVD regularization (Tikhonov and Arsenin, 1979)
with different parameters to CSEM data. Methods of CSEM
data processing similar to those for seismic data were also
reported by Mittet (2015), while Xie et al. (2012) suggested
regularization for transformation of the diffusion equation into
the wave equation for TEM data.

Theoretical background

Propagation of the electromagnetic field in a homogeneous
and isotropic conductive earth with the dielectric pemittivity
ε0, magnetic permeability µ0 and electrical conductivity σ, in
the absence of additional sources, is described by a system of
Maxwell equations, using the time-dependent (t) electric field
vector E and magnetic flux B in the coordinates x, y, z:

∇ × B = µ0 σE + µ0 ε0 
∂E
∂t

, (1)

∇ × E = − 
∂B
∂t

, (2)

∇ ⋅ E = 0, (3)

∇ ⋅ B = 0. (4)

The first and second terms in the right-hand part of equation
(1) refer, respectively, to conduction and eddy (displacement)
currents; the latter is assumed below to be much smaller than
the former, according to the quasi-stationary conditions (Kauf-
man and Morozova, 1970), and thus negligible. Then the
diffusion equation is obtained applying rotation to (1) and (2),
neglecting the eddy current, and using the vector analysis

equation ∇ × ∇ × A = ∇(∇A⋅A) − ∇ 2A. In the Cartesian coor-
dinates x, y, z, it is

∇ 2 B = µ0 σ 
∂B
∂t

, (5)

∇ 2 E = µ0 σ 
∂E
∂t

. (6)

Assume further that some vector fields F and G depend on
the variable q, as well as on the same spatial coordinates x,
y, z, and are chosen such to satsify the system

∇ × F = 
1

ψ 2
 
∂G
∂q

, (7)

∇ × G = − 
∂F
∂q

, (8)

∇ ⋅ F = 0, (9)

∇ ⋅ G = 0. (10)

Rotation of (7) and (8), with the above vector equation,
leads to

∇ 2 F = 
1

ψ 2
 
∂2F

∂q 2
, (11)

∇ 2 G = 
1

ψ 2
 
∂2G

∂q 2
. (12)

Expressions (11) and (12) are wave equations for the fields
F and G with the velocity ψ. Any fileds that satisfy equations
(11) and (12) can be processed with the same methods as for
seismic waves. 

The transformation of the electromagnetic fileds E and B
that satisfy the system of equations (1)–(4) into the wave fields
F and G that satisfy a system equivalent to (7)–(8) was
discussed in some theoretical studies (Hoop, 1996; Swidinsky,
2011). The transoformation into the wave domain can be
obtained from equations (1) and (2), with the term M
responsible for eddy currents at the source:

∇ × B = µ0 σ (x, y, z) E + M, (13)

∇ × E = − 
∂B
∂t

. (14)

Equations for the wave fields F and G are obtained with
the source function (the term K) added to (7) and (8):  

∇ × F = 
1

ψ (x, y, z)2
 
∂G
∂q

 + K, (15)

∇ × G = − 
∂F
∂q

. (16)

Swidinsky (2011) reported transformation of the solution
to (1)–(4) into that for a system equivalent to  (7)–(8). The
formalism for a symmetrical system of Maxwell equations
with a fictitious magnetic charge added as a field source can
be found in (Hoop, 1996). A pair of diffusion-to-wave
transforms is obtained by the Laplace transformation as 

G.A. Gretskov et al. / Russian Geology and Geophysics 58 (2017) 744–751 745



B (t) = ∫ 
0

∞

W1 (t, q) F (q) dq (17)

and 

E (t) = ∫ 
0

∞

W2 (t, q) G (q) dq, (18)

where 

W1 (t, q) = 
1

√4πt3
 √α  q exp 




− 
αq 2

4t




 ,

W2 (t, q) = 
1

√4παt
 



αq 2

2t
 − 1




 exp 




− 
αq 2

4t




 .

The parameter α in the equations for W1 and W2 is the
scaling coefficient of the time variable (hereafter called
‘noncalibrated time’).

In some specific cases, transformations (17) and (18) are
possible in the analytical way, but numerical methods are
applied most often to real data. 

With discretization at an equal stepsize ∆t in time and at
∆q in pseudotime, the electromagnetic field is written as the
vectors E and B of the length N, with their elements being
electric and magnetic fields calculated within the specified
time count. In the same way, the pseudowave fields can be
written as the vectors F and G of the length M, with elements
calculated for the specified value q. From equations (16) and
(17) it is clear that integration is performed over a semiinfinite

interval, but finite lengths of the vectors M and N are required
for the numerical case.

After discretization, integral equations (17) and (18) with
respect to the functions F and G can be written in the matrix
form:

A
^

1 F = B, (19)

A
^

2 G = E. (20)

The exponentially decaying kernel of the transform in
W1 (t, q) at a quite large argument q and a small argument t

leads to exponential zeroing of the singular numbers A
^

1. Such

matrices, with a great number of nearly zero elements are
quasi-degenerated, and back transformation from the diffusion
domain to the wave domain is thus unstable. Solving such
ill-posed problems is possible with regularization by various
methods.

Numerical transformation

Equation (19) for the vector F can be solved (Swidinsky,
2011) using singular-value decomposition (SVD) of the matrix
A
^

1 leading to the dot product of three matrices:

A
^

1 = U
^

 L
^

 V
^ T, 

where

U
^  T U

^
 = V

^ T V
^

 = V
^

 V
^ T = I

^
,

Fig. 1. Transient responses of a multioffset system.
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where I
^
 is a unit matrix, and the matrix L

^
 contains singular

values of the matrix A
^

1 on its main diagonal. Then the

non-regularized solution F can be written as

F = V
^

 L
^ −1 

U
^  T B. (21)

Solution to (21) is numerically unstable because the
singular values of the quasi-degenerated matrix A

^
1 are vanish-

ing, but it can become stable if the regularization parameter
k is added to these values:

F = V
^

 (L^ 2 + kI
^)−1 

L
^

 U
^  T B. (22)

Otherwise, Tikhononv’s regularization (Tikhonov and
Arsenin, 1979) can be applied to stabilize the solution of (19).
With the regularization Γ^, the solution becomes

F = A
^

1
 T W

^
 A
^

1 + λ Γ^ T Γ^) −1 A
^

1
 T W

^
 B, (23)

where λ is the regularization parameter and W
^

 is the diagonal
matrix bearing calculation errors.

The transformation into the wave domain can be performed
numerically using the model of a layered conductive half-
space with two plane-parallel boundaries (model 1: ρ1 =
10 Ohm⋅m, h1 = 1000 m; ρ2 = 200 Ohm⋅m, h2 = 2500 m;
ρ3 = 1000 Ohm⋅m, ρ is the layer resistivity, and h is the layer

Fig. 2. Wave transform obtained using SVD (r = 4400 m) (a) and Tikhonov’s (r = 4400 m) regularizations (b).

Fig. 3. Comparison of wave transforms obtained using SVD (1) and Tikhonov’s regularizations (2).
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thickness), lying under a nonconductive half-space. The source
has a form of a square transmitter loop, with a unit current,
lying on the flat surface of the conductive half-space. The
transmitter current is turned-off instantaneously at the time
t = 0:

J (t) = 



1,  t < 0;
0,  t ≥ 0.

(24)

The induced emf (voltage) is measured by square receiver
loops placed at equal spacing along a profile on the extension
of one transmitter axis. Curves of time-dependent voltage
decay ε (t) (Fig. 1) for a set of offsets (distance between the
transmitter and receiver centers) at different points of the
profile are described as solutions to the diffusion equation.

Further two above numerical algorithms are used for the
transformation of the multiple-offset ε(t) into the wave field
F (17). The number of time counts is N = 3200; the time t is
specified with a uniform stepsize from 0.0001 s to 10 s;
M = 2400; q changes with a constant step of 0.01 s to 100 s;
the scaling coefficient is α = 0.5; the parameter k for SVD

regularization after a number of numerical experiments is
assumed to be 10–4. The regularization is performed with the
unit matrix Γ^norm, and the parameter λ is likewise assumed to

be 10–4. Numerical solution to (22) and (23) for the sets of
curves ε(t) leads to the wave field F. Figures 2a and 2b show,
respectively, the wave transforms obtained by the SVD
method (offset r = 4400 m) and by Tikhonov’s regularization.

The wave transforms obtained by different regularization
methods for all offsets (Fig. 3) are used then to plot offset
dependence of travel times (Fig. 4a). The travel time curves
for some typical geological sections can be obtained as
follows. Note that the travel times for the cases of SVD and
Tikhonov’s regularizations are quite similar (Fig. 4a). That for
Tikhonov’s regularization shows more distinct boundary ef-
fects in the distance range 1600–2400 m while that for SVD
is smoother. The match of travel time curves can be achieved
by fitting the regularization parameters but the SVD regulari-
zation is simpler. Therefore, the SVD regularization is applied
further for solving equation (17). The travel-time curves can
be used to calculate the velocity of the wave transform
ν = 1 / (∂t / ∂r); the respective velocity variations are shown in

Fig. 4a.
In order to test the transformation into the wave equation

solutions, the wave transform (r = 200 m) is substituted into
the right-hand part of equation (17). The resulting TEM curve
differs slightly from the original voltage decay curve (Fig. 5):
relative deviation does not exceed 1.5% before 0.01 s and then
increases with time, but the late-time tail of the curve (after
0.1 s) is impossible to reconstruct.

The travel-time curves for the conductive half-space with
different resistivities (Fig. 6a) show that the slope decreases
with resistivity increase. The respective velocities (Fig. 6b)
remain the same for all offsets and for all resistivity values:
2230 m/s at ρ = 10 Ohm⋅m, increasing with resistivity to
4973 m/s at ρ = 50 Ohm⋅m; the velocity ratio is ν1 / ν2 = 

√ρ1 / ρ2 .
As another example, consider emf induced by a vertical

magnetic dipole with the moment M above an infinitely thin

Fig. 4. Travel time (a) and velocity (b) curves based on wave transforms for a three-layer earth.

Fig. 5. Test of mutual uniqueness of wave transforms: original voltage decay
curve (solid line) and voltage decay curve obtained by wave transform inversion
(white circles).
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horizontal plate with the conductivity S =     lim
h→0, ρ→0

     h / ρ, at the

depth z in a nonconductive homogeneous space (h and ρ are,
respectively, the thickness and resistivity of a single conductor
in a nonconductive medium). For a coductor, the time
deconvolution of voltage is given by (Sidorov, 1985) 

∂Bz

∂t
 = 

Mq
πS

 
m [3r 2 − 8m 2]

[r 2 + 4m 2]7 / 2
,

where m = z + t / µS; q is the moment of the receiver loop (dot

product of its surface and number of turns); r is the offset
(distance from the source to the receiver center).

For numerical transformation of the signal into the wave
domain, consider a 10 m thick conductive layer, with the
conductivity S (10, 20, 50, 100 S/m) in a non-conductive
medium. The layer top lies at the depth z1 = 10 m. A
transmitter and 30 receivers lie along the same line with the
offsets from 150 to 400 m. The velocity calculated after the
transformation (Fig. 7) decerases when conductivity S in-
creases while the velocity ratio v1/v2 is √S2 / S1 .

All travel-time curves at a resistivity varying from 10 to
60 Ohm⋅m in the first layer of the three-layer model (Fig. 8a)
converge at one point at short offsets, and their slope is
inversely proportional to resistivity. The time difference is
greater at larger offsets and reaches 1.58 s at r = 10,000 m.
The velocity of the wave transform increases with resistivity
(Fig. 8b), from 2000 to 5000 m/s at short offsets and within
4900–9500 m/s at long offsets.

Travel times of the fictitious wave increase (∆t = 0.22 s,
r = 10,000 m) as ρ2 becomes ten times greater (Fig. 9a). At
offsets shorter than 2200 m, travel times are almost inde-
pendent of the resistivity of the second layer. The respective
velocities of the wave transform (Fig. 9b) increase with the
resistivity of the second layer at offsets longer than 2200 m.

Travel times depend also on the thickness of the conductor
(Fig. 10a): travel-time curves almost coinside at offsets less
than 3200 m and then increase with layer thickness; ∆t reaches

1.59 s at 10,000 m. The velocity patterns derived from travel
times (Fig. 10b) show almost no offset dependence at large
h1, with the velocity about 2095–2230 m/s. As h1 decreases,
the velocity changes more strongly: 2230–3560 m/s at h1 =
2000 m; 2230–4900 m/s at h1 = 1000 m.

Conclusions

TEM data can be transformed into the wave-equation
domain using the SVD or Tikhonov regularizations. Special
techniques have been suggested to calculate travel times and
velocities of the respective wave transforms. The tested earth
models include a half-space, a thin conductor in a non-con-
ducting space (S film), and a layered half-space with two
plane-parallel boundaries. The velocity-resistivity relationships
obtained for models of a homogeneous conducting half-space
and a thin condutor are V1 / V2 = √ρ1 / ρ2 .

Fig. 6. Travel times of wave transforms for the conductive half-space (a), velocity curves derived from wave transforms for the conducitng half-space (b). Curves
show resistivity, in Ohm⋅m.

Fig. 7. Velocity curves derived from wave transforms of the conducting S film.
Curves show conductivity of S film, in S/m.
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Fig. 9. Travel times as a function of resistivity of the second layer (a) and velocity derived from wave transforms as a function of resistivity of the second layer in a
three-layer earth (model 1) (b). Curves show resistivity: ρ1 = 50, 500 Ohm⋅m.

Fig. 10. Travel times as a function of thickness of the first layer (a) and velocity derived from wave transforms as a function of thickness of the first layer in a
three-layer earth (model 1) (b). Curves show layer thickness: h1 = 1000, 2000, 4000 m.

Fig. 8. Travel times as a function of resistivity of the first layer (a) and velocity derived from wave transforms as a function of resistivity of the first layer in a
three-layer earth (model 1) (b). Curves show resistivity: ρ1 = 10, 20, 30, 40, 50 Ohm⋅m.
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