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Abstract

A new method is suggested for calculation of transient electric field response to conducting magnetically viscous earth excited by a grounded
line source. Calculation algorithms are implemented in the computer program FwLL_MV. Using a uniform, conducting magnetically viscous
half-space as an earth model, we have shown that magnetic relaxation affects the TEM response of equatorial and in-line arrays. As in the
case of loop arrays, apparent resistivity steadily decreases with time. The higher the half-space resistivity and the shorter the offset, the earlier
the voltage and the apparent resistivity begin to decrease as 1/t. Magnetic relaxation and decay of eddy currents are independent processes
within the range of resistivities typical of rocks.
© 2017, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
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Introduction

Magnetic viscosity, or a magnetic after-effect, is a property
of ferrimagnetic materials to respond with a lag to the applied
external field because of magnetic relaxation. The lag in their
magnetization, magnetic permeability, and other changes may
range from fractions of a second to tens of thousand years
(Trukhin, 1973). The magnetic after-effect shows up in almost
all ferrimagnetics, including rocks where it results from
magnetic relaxation of single-domain grains in ferrimagnetic
minerals which vary in grain sizes from fractions to hundreds
of µm (Bolshakov, 1996). Relaxation times of induced
magnetization in ultrafine superparamagnetic (SPM) particles
of ferromagnetic minerals are from ≈10–9 to 102 s or more
(Dormann et al., 1997). 

The relaxation times of SPM particles are commensurate
with measurement time gate of modern TEM systems, and
magnetic viscosity thus affects transient responses (Kozhev-
nikov et al., 2012).

The known examples of magnetic viscosity effects on
induction data refer to the cases of inductive excitation and
sensing with ungrounded transmitter and receiver loops

(Buselli, 1982; Colani and Aitken, 1966; Kozhevnikov and
Snopkov, 1990, 1995; Kozhevnikov et al., 2012; Pasion et al.,
2002; Stognii et al., 2010; Thiesson et al., 2007). Correspond-
ingly, only loop arrays are considered in publications dealing
with the theory of magnetic viscosity effects in induction
resistivity data, as well as with respective simulations (Ko-
zhevnikov and Antonov, 2008, 2009, 2011; Lee, 1984a,b).

Magnetic viscosity effects in data acquired with grounded
transmitter and receiver lines have never been reported so far
but they can be expected to exist, proceeding from the
following considerations. Mutual inductance between two
grounded lines depends on frequency (ω), conductivity (σ),
and magnetic permeability (µ) of the earth (Mikhailov et al.,
1979; Sunde, 1949), and this dependence should appear in
frequency- and time-domain data because the permeability  in
magnetically viscous media is frequency-dependent.

Both transmitter and receiver in loop-based TEM systems
can be presented as a combination of horizontal grounded lines
in calculations of their transient responses. Inasmuch as loop
response is sensitive to magnetic viscosity of the underlying
earth (Kozhevnikov and Antonov, 2008), it is reasonable to
assume the same sensitivity in grounded lines treated as loop
components. 

Grounded lines are currently used in induced polarization
(IP) surveys. IP-affected responses commonly decay more
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slowly than the induction ones, and magnetic viscosity may
remain obscured by slowly decaying IP processes. However,
this does not mean it is insignificant: when undetected and
not accounted for, magnetic viscosity may make latent noise
and interfere with IP respose.

Thus, it is important to check whether magnetic viscosity
affects grounded-line transient responses, and to reveal the
manifestation and estimate the magnitude of this effect if it
does exist. It is also useful to investigate the behavior of
magnetic viscosity as a function of resistivity and system
geometry by calculating the responses of a magnetically
viscous earth recorded by grounded lines.

As far as we know, such responses have never been in
focus before. Therefore, it is reasonable to begin with a simple
fundamental model—a uniform conductive magnetically vis-
cous earth, the same one that we used previously when
studying how magnetic viscosity-affected loop response de-
pends on earth’s properties and system configuration and size
(Kozhevnikov and Antonov, 2008). 

Below we report and discuss modeling results for an
equatorial array laid on a uniform conductive and magnetically
viscous earth. 

Magnetic relaxation and its relation with induction
transients 

As we mentioned, magnetic viscosity effects in induction
resistivity data most often result from magnetic relaxation of
ultrafine superparamagnetic grains in rocks. In this case,
time-dependent magnetic susceptibility κ(t) is (Kozhevnikov
and Antonov, 2008, 2009):

κ (t) = 
κ0

ln (τ2 / τ1) (B + ln t), (1)

where κ0 is the static susceptibility; τ1, τ2 are the lower and
upper bounds of the magnetic relaxation time; B is constant;
t is the time after stepwise change of the primary magnetic
field, which is most often within the gate τ1 << t << τ2.

In the frequency domain, the susceptibility κ(ω) is (Lee,
1984a,b)

κ (ω) = κ0 



1 − 

1
ln (τ2 / τ1) ⋅ ln 

(1 + iωτ2)
(1 + iωτ1)




, (2)

where i = √−1  and ω is the angular frequency, s–1. The
frequency ω used in the practice of magnetic susceptibility
measurements commonly fits the range 1/τ1 << ω  << 1/τ2. 

There are two ways to calculate induction transients
affected by magnetic viscosity (Kozhevnikov and Antonov,
2008). One way is based on relationship between the magnetic
flux through the receiver loop produced by the magnetization
of the earth and the κ(x, y, z, t) distribution.

After the turn-off of the transmitter current I0, magnetic
relaxation induces voltage in the receiver loop lying on a
magnetically viscous earth (Kozhevnikov and Antonov, 2008):

e(t) = I0 M0 
dκa

dt
,

where M0 is the static mutual inductance between the trans-
mitter and receiver loops on nonmagnetic ground; κa is the
time-dependent apparent (effective) magnetic susceptibility
controlled by the spatial distribution of κ(t) and system
geometry. M0 = Φ/I0, where Φ is the magnetic flux through
the receiver loop. M0 equals the loop self-inductance L0 in
coincident-loop or single-loop configurations. 

The calculations become simpler with analytical equations
for M0 and κa(t) that exist for symmetrical (central-loop and/or
coincident-loop) systems on the surface of a uniform or
layered magnetic earth (Kozhevnikov and Antonov, 2008,
2009, 2011). Specifically, for a uniform earth, κa(t) = κ(t)/2,
where κ(t) is found by (1). This way is not rigorous or
universal because it neglects the interplay between eddy
currents and magnetic relaxation. However, as shown by
previous calculations, the processes of eddy current decay and
magnetic relaxation are independent, which allows finding the
total transient using the principle of superposition (Kozhev-
nikov and Antonov, 2008, 2009).

Otherwise, induction responses are first calculated in the
frequency domain, with regard to frequency dependence of
magnetic permeability and then converted to the time domain
(Kozhevnikov and Antonov, 2008). This is a general approach
as it takes into account the eddy current-magnetic relaxation
interplay.

Earlier we used both approaches to calculate transient
responses of a layered magnetically viscous earth acquired by
loop arrays. The earth parameters included the resistivity ρ,
the static susceptibility κ0, as well as the largest (τ1) and
smallest (τ2) relaxation times.

However, the first approach is inapplicable to calculate the
TEM response measured with grounded line arrays, as no
analytical equations exist for M0 and κa; thus, only the other
way can be used. Unlike ungrounded loops, grounded lines
have both inductive and galvanic coupling with the earth.
Therefore, calculations of this responses is more challenging
than in the case of ungrounded loops. The algorithm and
simulation code have been designed by E. Antonov.

Transient electric field of a horizontal electrical
dipole placed on a conducting magnetically viscous
earth 

Let a dipole electrical source lie on a conducting magnetic
earth with the conductivity σ and the magnetic permeability

µ = µ
__

µ0, where µ0 = 4π × 10−7 H/m is the air magnetic per-
meability and µ

__
 = 1 + κ (ω) is complex and frequency-depend-

ent. The dipole has the moment Ix along the positive direction
of the x axis and is located at the center of the Cartesian
coordinates xyz (z axis directed downward; the earth-air
interface at the plane z = 0) coinciding with the center of polar
coordinates in the plane xOy (Fig. 1). The horizontal compo-
nents of the transient electric field at an arbitrary point (r, ϕ)
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on the earth surface are found using separation of variables
(also known as the Fourier method), in the frequency domain
with subsequent transformation to the time domain by inte-
gration of the harmonic electric field along the real-value
frequency axis (Tabarovsky and Sokolov, 1982):

E (r, z, t) = 
1

2π  ∫ 
−∞

∞

E (r, z, ω) e
−iωt

−iω  dω.

The horizontal components of the electric dipole field in
the frequency domain are found as (Tabarovsky, 1975):

Ix
 
Ex (r, z, z0, ω) = 

I
4πσ ∫ 

0

∞
∂f E

∂z ∂z0
 [J0 (λr) − cos 2ϕJ2 (λr)] λdλ 

+ 
IωµI
4π   ∫ 

0

∞

f H [J0 (λr) + cos 2ϕJ2 (λr)] λdλ, (3)

Iy
 
Ey (r, z, z0, ω) = − 

I sin 2ϕ
4πσ  ∫ 

0

∞
∂f E

∂z ∂z0
 J2 (λr) λdλ 

+ 
iωµI sin 2ϕ

4π  ∫ 
0

∞

f H J2 (λr) λdλ, (4)

∂f E

∂z ∂z0








z = z0 = 0

 = −p, (5)

f H
z = z0 = 0

 = 
µ

µλ + µ0 p
 = 

µ
__

µ
__

λ + p
, (6)

where p = √λ2 + k 2 , k 2 = −iωµσ; λ is the spatial frequency;

µ
__

 = 1 + κ is the relative magnetic permeability; κ is the earth’s
magnetic susceptibility; z0 and z are the vertical coordinates

of the source and receiver, respectively. The variables f E,

f H refer to the so-called basic functions of the electric- or
magnetic-type solutions to the forward problem for a horizon-
tally-layered earth. These functions depend on the earth
properties, spatial frequency, and the source and receiver
vertical coordinates but independent of the source properties
and field components. The recursive algorithm for calculating
fundamental functions in the layered problem was described
in detail by Tabarovsky (1979). Obviously, for a nonmagnetic
earth, µ

__
 = 1, κ = 0 and, correspondingly, the magnetic mode

of the layered function is 

f H
z = z0 = 0

 = 
1

λ + p
. (7)

After small transformations, with regard to known recurrent
equations (Abramowitz and Stegun, 1972)

J2 (λr) = 
2
λr

 J1 (λr) − J0 (λr), (8)

the equations for the electric field components (3) and (4) can

be written as a sum of integrals IxEα = ∑ 
i = 1

4

 Ai 
αIi,  α = (x, y),

where

I1 = ∫ 
0

∞

p J0 (λr) λdλ, (9)

I2 = ∫ 
0

∞

p J1 (λr) dλ, (10)

I3 = ∫ 
0

∞
µ
__

µ
__

λ + p
 J0 (λr) λdλ, (11)

I4 = ∫ 
0

∞
µ
__

µ
__

λ + p
 J1 (λr) dλ, (12)

A1
x = − 

I (1 + cos 2ϕ)
4πσ ,  A2

x = 
I cos 2ϕ
2πσr

, 

A3
x = 

Iiωµ (1 − cos 2ϕ)
4π ,  A4

x = 
Iiωµ cos 2ϕ

2πr
, (13)

A1
y = − 

I sin 2ϕ
4πσ ,  A2

y = 
I sin 2ϕ
2πσr

, 

A3
y = − 

Iiωµ sin 2ϕ
4π ,  A4

y = 
Iiωµ sin 2ϕ

2πr
(14)

Integrals (9–12) for a conducting nonmagnetic earth
(µ
__

 = 1, κ = 0) are reduced to table integrals, while the electric

field components IxEx and IxEy can be expressed analytically

(Spies and Frischknecht, 1991; Veshev, 1965):

IxEx
 An = 

I

2πσr 3 3 cos 2 ϕ − 2 + (1 + kr) e−kr
 , (15)

Fig. 1. Horizontal electric dipole on the earth’s surface.
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IxEy
 An = 

3 cos ϕ sin ϕ I

2πσr 3
. (16)

The equations are valid to account for induced polarization.
In this case, it is enough to use the respective presentation for
conductivity, for instance, with the Cole–Cole model (Lee,
1981). 

However, in the case of a magnetic earth, integrals (11)
and (12) cannot be reduced to the table integrals, and require
numerical integration. For real magnetic permeability, the
solutions for transients can be obtained with (11), (12) by
changing the sequence of transformations with respect to the
angular (ω) and spatial (λ) frequencies (Ignetik et al., 1985;
Wait, 1982), but numerical methods are required anyway.

Equations (3) and (4) can be presented as a sum of
analytical equations (15) and (16) found for complex magnetic
permeability plus some correction not included into these
equations. Such a correction is obviously necessary to calcu-
late the source-orthogonal component Ey. Equation (16) for a
nonpolarizable and/or nonmagnetic earth is independent of
frequency and, correspondingly, does not contribute to tran-
sient responses associated with the turn-off of the primary
field. Thus, the correction is applied to account for the earth
magnetic properties in the component Ey. To find this
correction, the part of the fundamental function associated
with the magnetic properties of the earth has to be separated
from integrands of (11), (12). With regard to (6) and (7), the
basic function for the correction is given by

µ
__

µ
__

λ + p
 − 

1
λ + p

 = 
pκ

(λ + p + λκ) (λ + p).

The integrals in the equation for calculating the correction
are

I3
MV = ∫ 

0

∞
pκ J0 (λr) λdλ

(λ + p + λκ) (λ + p), (17)

I4
MV = ∫ 

0

∞
pκ J1 (λr) dλ

(λ + p + λκ) (λ + p). (18)

Finally, equations (9), (10) for the electric field components
in a magnetic earth become 

IxEx = IxEx
An  + A3 x I3

MV + A4 x I4
MV,

IxEy = IxEy
An  + A4 y I3

MV + A4 y I4
MV.

The integrals I3
MV and I4

MV(17), (18) are found numerically.
In ground TEM surveys, both transmitter and receiver lie on
a horizontal plane. In this case, the integrals of the form (17),
(18) converge poorly and are calculated by deformation of the
integration path in a complex plane. For forward resistivity
and electromagnetic induction problems, the method was
described in several publications (Mogilatov and Potapov,
2014; Wait, 1982; Zaborovsky, 1963). Using the equation for
the Bessel functions as a sum of the first and second-order
Hankel functions (Abramowitz and Stegun, 1972)

Jv (z) = 
1
2

 Hv (1)(z) + Hv (2)(z) ,

and the equations

Kv (z) = 
iπ
2

 eiπv / 2 
Hv (1)(iz) = − 

iπ
2

 e−iπv / 2 
Hv (2)(−iz),

equations (17), (18) can be brought to exponentially decaying
modified Bessel functions K0(z) and K1(z). We apply integra-
tion in the complex plane z = λx + iλy along λc = λx (1 + it) and

λ
__

c = λx (1 − it), where t = tan α, instead of the integration along

the real axis in (17), (18); the slope α is chosen such that
Re  (p) ≤ 0 (Tabarovsky, 1975).

As a result, equations (17) and (18) become

I3
MV = 

i
π 







− ∫ 

0

∞ K0 (−iλcr) pcκλcdλc

(λc + pc + λcκ) (λc + pc)
 

+ ∫ 
0

∞
K0 (iλ

__
cr) pκλ

__
cdλ

__
c

(λ
__

c + p
_

c + λ
__

cκ) (λ
__

c + p
_

c)







 , (19)

I4
MV = − 

1
π 







 ∫ 
0

∞
K1 (−iλcr) pcκdλc

(λc + pc + λcκ) (λc + pc)
 

+ ∫ 
0

∞
K1 (iλ

__
cr) p

_
cκdλ

__
c

(λ
__

c + p
_

c + λ
__

cκ) (λ
__

c + p
_

c)







 , (20)

where λc = λx (1 + it), λ
__

c = λx (1 − it), t = tan α, i = √−1, pc =

√λc
2 + k2 , p

_
c = √ λ

__
c
2 + k2 .

Figure 2 shows the resulting transients in the time domain
for an equatorial system on a magnetically viscous earth. The
transmitter and receiver lines (AB and MN) are 100 m and
20 m long, respectively, and are spaced at r = 10 m. The
resistivity is Ohm⋅m,  SI units, τ1 = 10–6 s, τ2 = 106 s. The
panels a and b of Fig. 2 show, respectively, the current-nor-
malized transient ∆Ux and its components ∆UAn and ∆UMV

found by (15) plus the correction calculated using (17) and
(18) equations (Fig. 2a) and the ∆UMV/∆UAn curve (Fig. 2b).
The correction not included into the analytical equations (15),
(16) is large and may lead to a significant error in field
calculations if neglected.

Model and array parameters 

As in the previous studó of loop transient responses
(Kozhevnikov and Antonov, 2008), the calculations discussed
in this paper were made assuming τ1 = 10–6 s, τ2 = 106 s and
the static magnetic susceptibility κ0 = 10–2 SI units, which is
of the same order of magnitude as κ0 obtained by inversion
of induction transients for tuffs and traps in the Malaya
Botuobiya area in Western Yakutia  (Stognii et al., 2010) and
for the Vitim Plateau basalts in Transbaikalia (Antonov et al.,
2011; Kozhevnikov and Antonov, 2012).
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The calculations were done for equatorial and in-line
arrays, with a 100 m long transmitter line (AB) and a 20 m
long receiver line (MN), their lengths corresponding to the size
of loop systems that are often reported as being sensitive to
magnetic viscosity effects. Such arrays are commonly used in
IP studies. The magnetic viscosity effects turned out to be the
same in data of both arrays, and the considerations below are
thus restricted to the equatorial configuration.

The transients were calculated in the time range from
10 µs to 1 s corresponding to the characteristic times of
induction (TEM) and electrochemical (IP) responses.

Results

The reported numerical experiment aimed at investigating
time-domain magnetic viscosity respose as a function of offset
and earth resistivity. 

In order to study the interplay of magnetic relaxation and
eddy current decay as a function of resistivity, transients were
calculated for an offset of r = 10 m and a resistivity from 1
to 106 Ohm⋅m. With such a short offset, the equatorial array
is similar to a symmetrical Schlumberger array often used in
the survey practice.

Current-normalized voltage decay curves e(t)/I in Fig. 3
represent responses of a nonmagnetic (a) and a magnetically
viscous (b) earth. In the case of a nonmagnetic earth (Fig. 3a),
after some time, which is shorter at higher resistivity, the volt-

age decay is inversely proportional to t3/2: e (t) / I ∝ 1 / t−3 / 2.
The curves in panels a and b coincide at early times, i.e., the
magnetic viscosity effects remain irresolvable against the eddy
current contribution.   

At late times, voltage decay associated with magnetic
relaxation is slower; the time when the effect becomes evident
is inversely proportional to resistivity. With time, voltage
decays ever more slowly: e (t) / I ∝ 1 / t. The same decay is
observed in loop responses and is diagnostic of magnetic

viscosity (Buselli, 1982; Colani and Aitken, 1966; Kozhev-
nikov and Antonov, 2008).

For late times, apparent resistivity (ρa) curves (Fig. 4) are
calculated as (Spies and Frischknecht, 1991) 

ρa = 
LAB 

 2 µ0
3

144π3t3
 




e (t)
LMN I





 −2

,

where t is the time, s; LAB and LMN are the lengths of the
transmitter and receiver lines, respectively, m; I is the
transmitter current, A; e(t) is the voltage induced in the
receiver line, V.

The magnetic viscosity effects are more prominent in ρτ
curves than in those of voltage decay (compare Fig. 4a and
Fig. 4b). The ρτ values become equal to the resistivity of
nonmagnetic earth at some late times (Fig. 4a). The effect of
magnetic relaxation appears as progressive ρτ decrease till the
asymptote where the apparent resistivity decreases as 1/t
(Fig. 4b); the higher the resistivity the earlier the ρτ decrease
becomes evident.

To optimize TEM surveys in potentially magnetically
viscous areas, it is useful to know how magnetic relaxation
effects in data depend on the system geometry and size. The
influence of offset (1, 10, 102, and 103 m) on apparent
resistivity (ρa) curves is shown in Fig. 5 for ρ =10, 102, and
103 Ohm⋅m and κ0 = 10–2 SI units.

The left branches of the ρa curves are above the horizontal
lines at ρa = ρ. The ρa overshoot with respect to ρ is higher
at lower resistivities, longer offsets, and shorter delay times.
The reason is that the apparent resistivity calculations were
made using late times formula (Spies and Frischknecht, 1991).
For nonmagnetic earth, ever decreasing ρa vs. ρ difference
would be observed with increasing t, in the same way as in
Fig. 5a. Magnetic relaxation causes progressive ρa decrease
with t; the effect is less prominent at lower resistivities and
longer offsets, but it is still notable even at r = 103 m at 102

and 103 Ohm⋅m; at ρ = 10 Ohm⋅m, magnetic relaxation be-
comes evident at r ≤ 100 m.

Fig. 2. Calculated transient voltage Ux and its components (∆UAn,  ∆UMV) for an equatorial array.
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Fig. 3. Transient voltage responses: a, uniform conducting earth; b, uniform conducting and magnetically viscous earth (κ0 = 10–2 SI units). Equatorial array:
AB = 100 m, MN = 20 m, r = 10 m. Numerals at curves are resistivity in Ohm⋅m.

Fig. 4. Apparent resistivity (ρa) curves: a, uniform conducting earth; b, uniform conducting and magnetically viscous earth (κ0 = 10–2 SI units). Equatorial array:
AB = 100 m, MN = 20 m, r = 10 m. Numerals at curves are resistivity in Ohm⋅m.
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In our previous studies of ungrounded loop transient
responses of a magnetically viscous earth (Kozhevnikov and
Antonov, 2008, 2009), magnetic relaxation and eddy current
decay were shown to be independent.

The calculations of the AB–MN equatorial array transients
(Fig. 6) began with the voltage decay e1(t)/I in the receiver
line for a conducting (ρ = 10, 102, and 103 Ohm⋅m) nonmag-
netic (κ0 = 0) earth and then proceeded to the case of
κ0 = 0.01 and ρ = 106 Ohm⋅m. Eddy currents decay very
rapidly at these resistivities, and voltage in the receiver line
(e2(t)/I) is induced mostly by magnetic relaxation even at early
times.

Then we calculated the total voltage eΣ(t)/I = e1(t)/I +
e2(t)/I (see the curves in Fig. 6, along with the e(t)/I curves
found with regard to the eddy current-magnetic relaxation
interplay for κ0 = 0.01 SI units, ρ = 10, 102, and 103 Ohm⋅m).
The curves eΣ(t)/I and e(t)/I coincide, this meaning that the
two processes are independent, as in the case of loop arrays.
Therefore, the superposition principle is valid for calculating
transient responses of a magnetically viscous earth in the case
of grounded lines as well.

Discussion 

Forward modeling shows that grounded-line array response
is affected by magnetic viscosity in the same way as those of
loop arrays. In both cases, voltage induced by magnetic
relaxation and apparent resistivity decay inversely proportional
to time (∝1/t). 

The physics of the effect was discussed previously for the
case of loop responses (Kozhevnikov and Antonov, 2008). The
transmitter primary magnetic field magnetizes the target object
and the latter produces the secondary field which remains after
the primary filed has been turned-off. The secondary field
decays synchronously with viscous magnetization, and the
decaying magnetic flux induces voltage in the receiver loop.
In this case, there exist two inductively coupled closed loops

Fig. 5. Apparent resistivity (ρa) curves for an equatorial array on a magnetically viscous earth (κ0 = 10–2 SI units), with a resistivity of 10 (a), 102 (b), and 103 (c)
Ohm⋅m. Numerals at curves are offset (r) in m.

Fig. 6. TEM voltage responses for an equatorial array (AB = 100 m, MN = 20 m,
r = 10 m), calculated by rigorous and approximate ways. The array is on uni-
form conducting and magnetically viscous earth (κ0 = 10–2 SI units). Numerals
at curves are resistivity in Ohm⋅m.
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made of insulated wire; actually, the transmitter and receiver
loops make up a transformer with the properties of its core
depending on objects in the vicinity of the loops and on the
properties of the earth. 

The case of grounded lines is more complicated. The
primary magnetic field results from both currents in the
transmitter line and currents flowing in the earth, and there is
no wire receiver loop.

In the equatorial array (Fig. 7), the current I in the
transmitter line AB enters the earth at the electrode A and turns
back to the line at the electrode B (the current distribution in
the earth is not shown in the figure for simplicity). Currents
in the wire and in the earth produce the primary magnetic
field under the action of which each elementary volume ∆V
of the earth aquires the magnetization M (Fig. 7 shows the
field B1 produced by current in the wire). Each elementary
volume ∆V with the magnetization M has the magnetic
moment ∆M = M∆V; the secondary magnetic field B2(t) is a
sum of fields produced by all elementary volumes ∆V.

After the current turn-off and removal of the primary field,
magnetization disappears very rapidly, unless the earth amte-
rial is not magnetically viscous. In the case of magnetically
viscous earth, magnetization and secondary magnetic field in
the earth decay slowly. 

Magnetic flux through the loop placed in the vertical plane
below the line MN is

Φ = ∫ 
S

B2n (t) dS,

where S is an arbitrary surface bounded by the loop Γ and
B2n is the magnetic field component normal to the surface S.

According to Faraday’s law, the time-dependent magnetic
flux Φ induces the voltage e(t) in the loop Γ: 

e (t) =  ∫O
Γ
  El dl = − 

dΦ
dt

,

where El is the component of vortex electric field directed
along the loop; dl is an infinitesimal line element of the loop.
The voltage e(t) induces eddy current in the loop Γ, which
flows along the ground surface and produces the potential

difference between the electrodes M and N of the receiver
line. 

The loop Γ in Fig. 7 corresponds to one of many such
loops or one of many current lines in the earth. Potential
difference between the electrodes M and N is an overall effect
due to all secondary currents distributed in the earth. 

The actual situation is obviously more complicated than the
above simplified model because the inductance between the
transmitter and receiver lines depends on both magnetic
permeability and resistivity of the earth.

Note in conclusion that, when studied with grounded lines,
the earth should be conducting, i.e., its resistivity should be
finite. As for the loop arrays, they can be used in magnetic
viscosity studies even in the case of nonconductive earth.

Conclusions

A new method is suggested for calculation of transient
electric field response to conducting magnetically viscous
earth excited by a grounded line source. Calculation algo-
rithms are implemented in the computer program FwLL_MV.

Using a uniform, conducting magnetically viscous half-
space as an earth model, we have shown that magnetic
relaxation affects the TEM response of equatorial and in-line
arrays. 

As in the case of loop arrays, apparent resistivity steadily
decreases with time. The higher the half-space resistivity and
the shorter the offset, the earlier the voltage and the apparent
resistivity begin to decrease as 1/t.

For typical rock resistivities, magnetic relaxation and decay
of eddy currents are independent processes.
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