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Abstract

Ungrounded horizontal loop responses at low frequencies and/or late times can be modeled in terms of an equivalent circuit with lumped
elements, but a loop in a general case is a distributed system. At high frequencies and/or early times, the wire in combination with the
underlying earth makes a transmission line in which current behaves according to the wave equation. Solving the equation for current turn-off
is quite difficult because the primary parameters of the wire–earth system depend, in an intricate way, on earth conductivity (resistivity) and
frequency (or time). In modeling the current turn-off process, the loop was simulated as a symmetrical combination of two identical transmission
lines with shorted outputs. Modeling was performed in the frequency domain with subsequent transformation into the time domain. Comparison
of measured and computed transient self responses showed that good fit requires taking into account (1) interaction of each line with its own
image current, (2) mutual inductance of the two lines, and (3) skin effect in the wire. As a result of mutual inductance, the parameters of the
lines and, hence, of the whole loop depend on local conductivity, which, at least in principle, may allow one to infer the resistivity of shallow
subsurface from current turn-off responses. A real ungrounded horizontal loops lacks symmetry at early times and its magnetic field differs
from that predicted by the conventional methods of induction soundings.
© 2009, IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
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Introduction

Ungrounded horizontal loops are used in electromagnetic
surveys to excite the primary field and to measure the
secondary magnetic field. They are the usual basic constituents
of measurement systems in TEM prospecting and sounding.
Inasmuch as the measured responses of the earth are con-
volved with the transmitter and receiver loop responses, one
has to take into account the features and time of transmitter
current turn-off as well as the receiver self response in both
forward and inverse modeling (Efimov, 1976; Kozhevnikov
and Plotnikov, 2004; Sokolov et al., 1978; Vishnyakov and
Vishnyakova, 1974; Zakharkin, 1981).

In studying the self-response of a loop (Fig. 1, a) in
frequency and/or time domain, the loop is simulated by an
equivalent circuit (Fig. 1, b) with lumped inductance (L0),
capacitance (C0), and resistance R0 (Efimov, 1976; Hayles and
Sinha, 1986; Kozhevnikov and Plotnikov, 2004; Qian, 1985;
Nikolaev et al., 1988; Vishnyakov and Vishnyakova, 1974;

Zakharkin, 1981). The loop inertia is commonly expressed via
the resonance frequency f0 given by

f0 = 
1

2π√L0C0
. (1)

The equivalent loop elements are as a rule defined as
R0 = R⋅P, L0 = L⋅P, and C0 = C⋅P, where R, L, and C are the

wire resistance, inductance, and capacitance per unit length,
and P is the loop perimeter (Veshev, 1980; Zakharkin, 1981).
Thus, (1) becomes

f0 = 
1

2πP√LC
, (2)
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where from the size dependence of loop resonance frequency
becomes evident.

In addition to the elements of the loop itself, Figure 1, b
shows an external damping resistor load, with the resistance
Rd, connected to the loop output. The resistor Rd suppresses
high-frequency ringing which appears in the loop when it
becomes electronically switched off (from a battery or a dc
power unit). The optimal value Rd is given by

Rd = 
1
2
√L

C
. (3)

When such a resistor becomes connected to the loop, the
latter operates in a so-called critical state corresponding to the
least duration of the transient self response of the loop
(Efimov, 1976; Vishnyakov and Vishnyakova, 1974).

The equivalent lumped circuit model allows estimating the
loop resonance frequency, the form, and length of current
cutoff, minimum allowable recording time, and dynamic
measurement errors due to departure of the loop parameters
from the ideal values, which is essential in engineering
practice.

Early-time TEM measurements are becoming of ever
greater importance in near-surface surveys through recent
10–15 years. Shorter initial recording time requires a shorter
duration of transmitter current turn-off. Yet, this way has
technological and basic limitations. The latter are, namely, that
the lumped-circuit model fails to account for empirical data
(Kozhevnikov and Nikiforov, 1998, 2000; Kozhevnikov,
2006) because at early times the wire combined with the
underlying ground make a system with distributed parameters.
According to comparison of loop input resistance computed
using the lumped-circuit model with the values measured at
different frequencies, the loop behaves as a typical long
transmission line at high frequencies and, respectively, early
times (Kozhevnikov and Nikiforov, 1998, 2000; Kozhevnikov,
2006).

A loop model as a combination of two 
transmission lines

A transmission line made of a wire and the ground it lies
on seems to have little in common with an ungrounded
horizontal loop. However, by symmetry, a loop can be
presented as two serially connected identical transmission lines
with their meeting common point grounded. The current/volt-
age source likewise can be simulated by a combination of
identical serially connected sources with a grounded common
point.

See a square loop, with a wire of the length P, lying on
the ground and a current (voltage) source in Fig. 2, a, and the
loop and the source presented as two identical transmission
lines of the length P/2 each in Fig. 2, b. Circled 2 in Fig. 2,
a denotes the source with the output voltage U and the internal
resistance Ri, and circled 3 in Fig. 2, b marks two sources
with the output voltage U/2 and the self resistance Ri/2 each.

Using two sources equal in their effect to the original
source ensures complete symmetry (Fig. 2, b) and is advan-
tageous over an equivalent lumped-circuit model with two
identical four-poles of Nakhabtsev et al. (1985) which repre-
sents the voltage source as a single unit and is difficult for
analysis. The system in Fig. 2, b being symmetrical, the point
O and the point at the distance P/2 from it have the same
potential, and their connection to the earth causes no effect
on the distribution of voltage and current in the loop.
Therefore, one can use a wire of the length l = P/2 shorted at
the output to simulate the responses of an ungrounded loop
of the perimeter P (Fig. 2, c).

It is hard to study the operation of this line in all details
with regard to frequency dependence of its parameters and to
the ground properties, but some relatively simple cases may
be instructive. For instance, simulating the loop as a system
with distributed elements provides a general idea of current
turn-off after the loop ends have being electronically switched
off. Consider a practically important case of high-frequency
(f0) ringing in an open loop (Rd = ∞) left alone after being
switched off.

Let one loop end be the origin point, and the distance from
this end along the wire be the x coordinate; then, the x
coordinate of the other end corresponds to the loop perimeter
P. Let the steady current in the loop be I0. The behavior of
the current I(t, x) in the wire–earth system after the loop has
been switched off is given by (Kozhevnikov and Nikiforov,
1998, 2000; Kozhevnikov, 2006)

∂2I

∂t2
 − 

1
LC

∂2I

∂x2
 + 



R
L

 + 
G
C



 
∂I
∂t

 + 
GR
LC

I = 0 (4)

with the boundary (I(t, 0) = I(t, P) = 0) and initial (I(0, x) =
I0, ∂I(0, x)/∂t = 0) conditions; G is the wire insulation
conductance per unit length. Taking into account that

Fig. 2. Ungrounded horizontal loop 1 and current source 2 (a); same loop and
current source presented as two identical transmission lines A, B and
sources 3 (b); output-shorted line of length l = P/2 (c).
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(G/C) <<  (R/L) and neglecting the last term in (4) because the
loop has a high resonant frequency, we obtain

∂2I

∂t2
 − 

1
LC

∂2I

∂x2
 + 

R
L
∂I
∂t

 = 0. (5)

Using known solutions, e.g., for decaying string oscillations
(Aramanovich and Levin, 1969), it is easy to show that, with
the above assumptions, the solution of (5) is the sum

I(x, t) =

I0
4
π∑

1
2k + 1

k = 0

∞

e−mt 

cos ωkt + 

mk

ωk
sin ωkt




 sin 

πx(2k + 1)
P

. (6)

According to (6), switch-off produces current standing
waves in the loop, with the wavelength of the k-th wave
λk = (2P)/(2k + 1), and the angular frequency

ωk = (2k + 1)2(πa/P)2 − m2

1/ 2

, (7)

where a = (LC)–1/2, m = R/2L. The amplitude of each standing
wave decays exponentially with the time constant

τ0 = 1/m = 2L/R.

The phase velocity of the traveling wave, and the period
and wavelength of the standing wave are related as λ = ν/f.

Inasmuch as ν = (LC)−1/2 at high frequencies (Simonyi, 1956;
Johnson and Graham, 2003), the loop resonance frequency is

f0 = 
ν

2P
 = 

1
2P√LC

. (8)

The result differs from that predicted by the lumped-circuit
model: the loop resonance frequency according to (8) is π
times the frequency calculated with (2). The main mode
frequency f0 can be found from (7) for ωk assuming k = 0
and taking into account that, at high frequencies, the second
term in brackets is small compared with the first term.

To see what happens at different points of the wire after
the loop has been switched off, one can present the current
turn-off process as a superposition of forward and reflected
waves in a transmission line formed of a wire and the
underlying ground (Fig. 3, a). Switch-off produces, in each of
the two transmission lines, a negative current wave (step)
which is equal in amplitude to the pre-disconnection current
and travels from the loop input to the symmetry point (x =
P/2). As this wave reaches the zero-potential (pseudo-
grounded) midpoint, there arises a reflected wave traveling
from the midpoint back to the input. The total current in the
line is the sum of the pre-turnoff steady current and two waves
traveling, respectively, from the loop input to the midpoint
and back. The reflected wave reflects again from the open
loop input, and since then the current in the wire becomes a
sum of three waves and steady current. Then other reflections
occur, the superposition of waves traveling forward and back
produces a standing wave, and the process becomes periodical.
It would continue for an infinitely long time in an ideal

transmission line but real lines are always lossy thus making
the standing waves attenuate with time.

By the lag effect, the primary magnetic field in the wire–
earth system at earliest times (microseconds for 100 m ×
100 m loops) differs from that predicted by the classical theory
of EM prospecting. The early-time current distribution in the
loop is symmetrical about the y axis but lacks symmetry about
the x axis (Fig. 3, a). Therefore, the loop transient and/or
frequency responses may, in principle, depend on the place of
transmitter connection in the case of an asymmetrical envi-
ronment (e.g., a loop laid on an electrically asymmetrical
earth). This effect is known in the theory and practice of
near-surface antennas (Lavrov and Knyazev, 1965).

To stop the turn-off process, one has to provide resistance
matching, or the conditions when there is no reflection from
the open loop input. Matching can be achieved with an
external resistor (Rd), connected to the loop input, equal to
double high-frequency characteristic impedance Zw of the
wire–earth line, which is 2Zw = 350 Ohm in a standard copper
wire, with a section of a few mm2, laid on the ground
(Kozhevnikov and Nikoforov, 1998, 2000; Kozhevnikov,
2006). According to the long transmission line theory, the
high-frequency impedance is loss independent but is a func-
tion of line per-unit-length inductance and capacitance Zw =
√L /C  (Johnson and Graham, 2003; Simonyi, 1956). Therefore,
the resistance intended to suppress current oscillations in the
loop should be 2√L /C . This value is independent of the loop
size and is four times that calculated by (3) for an equivalent
distributed circuit.

Of course, the parameters of a real transmission line do
depend on frequency/time, the earth-induced frequency disper-
sion being especially high for the resistance (see below). If
the frequency/time dependence of R is impossible to neglect,
one has to use the equation (Kozhevnikov, 2006)

∂2I

∂t2
 − 

1
LC

∂2I

∂x2
 + 

1
L∫R

0

t

(τ)∂I(t − τ)
∂t

dτ = 0 (9)

instead of (5).

Solving (9) is a tough problem in a general case, but it is
physically reasonable to assume that the solution is presentable
as a sum of standing waves of the base and higher frequencies.
As the wire active resistance increases proportionally to
frequency (see below), waves with large k attenuate rapidly,
and in a few microseconds only the base mode survives in the
wire–earth system of the λ0 = 2P standing wave (Fig. 3, b),
with a current node and a voltage antinode at input points 1
and 2 and a current antinode and a voltage node at point 3.

The above equations and considerations give a generalized
idea of the early-time current distribution along the loop wire.
The next step is obviously to check the model predictions
against field measurements. The available TEM data amenable
to interpretation in terms of a distributed-circuit model can be
summarized as follows.

(1) Loop input impedance depends on frequency in the
same way as the input impedance of a transmission line
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shorted at the output (Kozhevnikov and Nikiforov, 1998, 2000;
Kozhevnikov, 2006).

(2) Switch-off gives rise to attenuating current and voltage
standing waves in an open loop (Helwig and Kozhevnikov,
2003; Kozhevnikov and Nikiforov, 1998, 2000; Kozhevnikov,
2006).

(3) A matching resistor connected to the loop input causes
a delay in the stepwise current turn-off which is proportional
to the distance from the loop input terminals (Helwig and
Kozhevnikov, 2003) instead of synchronous or synphase
turn-off.

This study is an attempt to interpret “quantitatively” the
experimental data for point (2) using the model of Fig. 2.

The existence of standing waves in an ungrounded hori-
zontal loop was recorded at different points of the wire.
Excitation was by a battery, a current-limiting resistor Rc-l,
and a fast electronic switch connected in series (Fig. 4, a),
and switch-off caused current oscillations.

See Fig. 4, b–d for field data from the Ol’khon test site
(western shore of Lake Baikal) of the Irkutsk Technical
University measured with a 200 m by 200 m loop of a standard
geophysical copper wire. Current oscillations were measured
with an oscilloscope and a low-resistance resistor shunt
connected to the wire break immediately at one input end
(x = 0), at the distance x = 0.25P from it, and at the midpoint
(x = 0.5P). The current decay differed at the three points
(Fig. 4, b–d), i.e., at early times (and, respectively, high
frequencies), the loop behaved as a distributed circuit. The

amplitude of current oscillations was maximum at the mid-
point and zero at the input where the battery was connected.
Thus, there were indeed current nodes at the loop input and
a current antinode at the midpoint. The current oscillation
amplitudes at the points x = 0, x = 0.25, and x = 0.5 are in
the proportion predicted by (6) for the base standing current
wave.

Comparison of measured and computed data

The loop model is used below to compute the transients
and to compare them with the measured responses. First one
has to choose the modeling strategy. Solving (9) is hard and,
moreover, it may be difficult to formulate the boundary and
initial conditions for the case of loop shunting with a matching
resistor, not to mention a circuit element with complex
frequency-dependent impedance.

Mind that at high frequencies and, correspondingly at early
times, one can model the responses of an ungrounded loop
with the perimeter P in terms of a single-wire transmission
line of the length l = P/2 shorted at the output. There is much
literature on frequency-domain modeling of these lines (e.g.,
Baskakov, 1980; Johnson and Graham, 2003; Simonyi, 1956).
Thus it appears reasonable to find first a frequency-domain
solution, using the transmission line theory, and then to
transform it into the time domain. Note also that the external
elements which may be connected at the loop input or at any

Fig. 3. Snapshots of current distribution in loop after current turn-off (a); current and voltage standing waves in loop, main mode (b). T is period of main mode. Current
distribution and primary magnetic field are symmetrical about y axis but asymmetrical about x axis.
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other point of the wire, including frequency-dependent ones,
are easily taken into account in the frequency domain.

Before proceeding to analysis of a loop with the perimeter
P as a system consisting of halves each being presented as an
output-shorted single-wire transmission line of the length l =
P/2, it is pertinent to give a synopsis of the theory of
transmission lines.

In the theory and practice of transmission lines, the
knowledge of the propagation constant γ

.
 and the characteristic

impedance Z
.

w., which in the general case are complex and
frequency-dependent, provides an exhaustive description of
the line in terms of the chosen model. The propagation
constant γ

.
 is

γ
.
 = α + jβ,

where α is the attenuation constant and β is the phase constant,
both of the same dimension 1/m, j = √−1 .

The per-unit-length parameters (capacitance, resistance, and
shunt conductance) being known, α and β are found as
(Baskakov, 1980; Simonyi, 1956):

α = 




1
2

 RC − ω2LC + 
1
2

 

R

2 + ω2L2
 

G

2 + ω2C2




1/ 2 



1/ 2

,

β = 




1
2

 ω
2LC − RG + 

1
2

 

R

2 + ω2L2
 

G

2 + ω2C2




1/ 2 



1/ 2

,

It is convenient to write the impedance Z
.
 as a product of

its modulus value and the phase constant:

Z
.

w = Z0ejψ,

where

Z0 = 




R2 + ω2L2

G2 + ω2C2





1/4

,

ψ = arg Z
.

w = 
1
2

 arctan 
G/(ωC) − R/(ωL)
1 + (GR)/(ω2LC)

.

See Fig. 5, a for a wire of the length P/2 which, combined
with the ground under it, makes up a single-wire transmission
line. Let the origin of the x axis be at the left end of the wire,
where the input voltage (U

.
1) and current (I

.
1) complex

amplitudes are specified. For the right end, specified are the
output voltage (U

.
2) and current (I

.
2). This system is a linear

stationary four-pole described by the respective matrix, ac-
cording to the general theory of electrical circuits.

For the line in Fig. 5, a, the input (x = 0) and output
(x = l) currents and voltages are related as (Baskakov, 1980):

U
.

1 = U
.

2 cosh γ
.
l + I
.
2 Zw sinh γ

.
l,

I
.
1 = 

U
.

2

Z
.

w

 sinh γ
.
l + I
.
2 cosh γ

.
l.

The complex voltage and current amplitudes at any point
are expressed via U

.
2 and I

.
2 as

Fig. 4. Circuit producing current pulses in loop (a) and current oscillations (b–d) measured at different loop points after switch off.
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U
.
(x) = 

U
.

2 + I
.
2Z
.
w

2
 eγ
.
(l − x) + 

U
.

2 − I
.
2Z
.

w

2
 e−γ

.
(l − x), (10)

I
.
(x) = 

U
.

2 + I
.
2Z
.

w

2Z
.
w

eγ
.
(l − x) − 

U
.

2 − I
.
2Z
.

w

2Z
.
w

e−γ
.
(l − x), (11)

Figure 5, b shows a loop half presented as an output-shorted
single-wire transmission line of the length l = P/2 and the
matching resistor R1 intended to prevent free current and
voltage oscillations in the line. It is obvious that Rl = Rd/2,
where Rd is the resistor connected to the loop input end
(Fig. 1, b).

In the frequency domain, the system in Fig. 5, b consisting
of a wire, ground under it, and the resistor R1, is described
by a complex transfer function S

.
(ω) written as the output/input

current ratio:

S
.
(ω) = 

I
.
(x, ω)

I
.
(0, ω),  x  ∈ [0, l]. (12)

Using (10) and (11) and taking into account that
(i) U(P/2) = 0 for an output-shorted line and (ii) the line
resistance at zero frequency equals the dc resistance of a wire
of the length l = P/2, this ratio at ω = 0 is found as

S
.
(0) = 

R1
R(0)l + R1

.

If the frequency is nonzero,

S
.
(ω) = 

R1

Z
.

in + R1
⋅e
γ
.
(l − x) + e−γ

.
(l − x)

eγ
.
l + e−γ

.
l

,

where Z
.
in is the line input impedance. For an output-shorted

line (Baskakov, 1980; Johnson and Graham, 2003),

Z
.

in = Z
.

w tanh (γ
.
l).

To move on, one has to specify I
.
(x, ω) and the model in

which R, L, C, and G are frequency-dependent and also depend
on the wire material and geometry, and on earth’s resistivity.

Transmitter current pulses are normally produced by a
periodic on/off switch of a battery or a dc generator (Fig. 4, a).
At switch off, the input current almost instantaneously zeroes
and holds zero until switch on. Thus, one can assume that an
ideal current source is connected to the input of the transmis-
sion line when studying loop responses over the switch-off
time interval.

Let a series of square current pulses (I1) with the period T
form at the input of the wire–earth transmission line, with the
amplitudes I0, and let the zero time coincide with the trail of
one of the pulses. Then the input current, at the point x = 0
(Fig. 5, b), can be written as a Fourier series (Simonyi, 1956):

I1(t) = I0










1
2

 − 
2
π∑

1
2k − 1

k = 1

∞

sin (2k − 1)2π
T

t










.

If the complex transfer function of the transmission line
(12) is written as

S
.
(ω) = S(ω)⋅ejϕ(ω),

where S(ω) and ϕ(ω) are the amplitude and phase of S
.
(ω),

respectively, the output current will be

I2(t) = I0










S(0)

2
 − 

2
π∑

1
2k − 1

k = 1

∞

S 



(2k − 1)2π

T



 ×

sin 



(2k − 1)2π

T
t + ϕ 




(2k − 1)2π

T



 






. (13)

To calculate the complex transfer function, with its ampli-
tude and phases included in (13), one has to know the
parameters of the wire–earth line. Per-unit-length parameters
of transmission lines used in induction surveys are discussed
in (Alekseev et al., 1978; Alekseev and Yakovlev, 1982;
Evdokimov et al., 1974; Nakhabtsev et al., 1985; Veshev,
1980; Veshev et al., 1974). The line parameters have been
assumed frequency-independent in this study, but their fre-
quency dependence and the ground resistivity should be taken
into account when modeling real systems.

The capacitance (C) can be estimated as follows. The
ground surface is equipotential with respect to the wire electric
field, and the capacitance of a horizontal wire laid at the height
h above the conductive ground can be found using the image
method (Fig. 6, a). As a result, one arrives at the known
equation (Bazutkin and Dmokhovskaya, 1983):

C, F/m = ε 10−9

18ln(2h/r), (14)

where r is the wire radius and ε is the relative permittivity of
the wire environment. When (14) is applied to estimate the
capacitance of geophysical lines, ε is taken as some effective
value εef in a range between relative permittivities of air and

insulating material.
The capacitance of a horizontal wire plotted as a function

of its height in Fig. 6, b was calculated using (14) for wires
with the commonly used radiuses r = 0.5, 1, and 2 mm,

Fig. 5. Segment of a transmission line consisting of loop wire and underlying
ground (a); one of two lines of length l = P/2 (Fig. 2): output is shorted and a
current source and a resistor are connected to input (b).
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assuming εef = 2. Thus, the capacitance of a wire laid near the
ground surface depends on the height h: it becomes 2 times
lower as h increases from 1 to 10 cm (gray zone in Fig. 6).
Precise C determination makes no sense because the wire lies

on a real surface with its variable topography, vegetation, and
moisture, but (14), nevertheless, provides reasonable capaci-
tance estimates depending on the wire parameters and height.

Unlike the capacitance, the inductance and resistance per
unit length are frequency-dependent. A current change in a
wire near the surface induces current to flow in the earth. If
the earth behaves as an electrically uniform half-space, this
current produces the same magnetic field as it would be by
the mirror image of wire current. The effective depth hef of
the image current depends on the subsurface skin depth δ:

hef = δ = √2/(σωµ) ,

where σ and µ are the earth conductivity and magnetic
permeability, respectively, and ω is the current angular
frequency. Therefore, the zero planes for voltage and current
do not coincide: for the former it is at the ground surface
(Fig. 6, a), but for the latter it is selected to lie on midway
between the magnetically equivalent image current below (at
h1) and the real wire current above (Fig. 7, a).

Then, the wire complex impedance (per unit length) is
given by (Wang and Liu, 2001)

Z
.

wr = Rwr + jω
µ0

2πln
2(h + p)

r
, (15)

where Rwr is the resistance of a wire itself, and p = δ(2j)−1/2.
The second term in (15) accounts for return or image current
in conductive earth.

At high frequencies, the skin effect in a wire influences its
resistance, and this influence can be included as follows
(Simonyi, 1956):

Fig. 6. Wire and its image for electric field (a); wire capacitance as a function of
its radius and height above ground surface (b).

Fig. 7. Wire and its image for magnetic field (a); frequency dependence of wire resistance (b); wire inductance as a function of frequency and earth resistivity (c), due
to skin effect in earth (1), skin effect in wire (2), both in earth and wire (3).
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Rwr = Rdc




1 + 

θ4

3




 for θ < 1, (16a)

Rwr = Rdc



θ + 

1
4

 + 
3

64θ



 for θ > 1, (16b)

where Rdc is the dc wire resistance; θ = r/(2δwr); δwr =
√2/(ωµwrσwr) ; µwr is the magnetic permeability of the wire

and σwr is the conductivity of its material. For θ = 1 Rwr was

calculated as a mean of two values found by (16a and b).
The wire resistance and inductance per unit length, with

regard to current in the earth and the skin effect in the wire
are

R1 = Rwr + ReZ
.
wr, (17)

L1 = 
ImZ
.
wr

jω . (18)

The skin effect is known to influence also the reactive wire
resistance, which shows up as change in its so-called inner
inductance. This inductance is normally negligible relative to
the extrinsic inductance (Johnson and Graham, 2003) and is
not included in (18).

The curves in Fig. 7, b are frequency dependences of wire
resistance R1 due to currents in the wire and in the earth,
estimated using (17) for a standard geophysical copper wire.
The earth-induced resistance increases proportionally to the
first power of frequency. The skin effect in the wire becomes
notable at a frequency about 10 kHz above which its
contribution to resistance grows proportionally to the fre-
quency square root. There are two essential points to note.
First, the resistance due to earth currents depends on frequency
but not on the resistivity of the subsurface. This is not
surprising because if the current frequency in the line is fixed
and the earth is electrically uniform, changes in its resistivity
cause change to the distribution of induced current which
adjusts to keep invariable the earth-induced resistance. In the
case of a nonuniform (say, layered) earth, its contribution to
the wire resistance depends on the resistivity distribution, but
the earth in this study is assumed to be a uniform conductive
half-space. Second, at frequencies above 10 kHz the contri-
bution of the skin effect in the earth to the wire resistance is
predominant, while the changes caused by Rdc and the skin
effect in the wire are negligible.

Curves in Fig. 7, c obtained using (18) illustrate how the
conductance L1 depends on the current frequency and the
resistivity of the earth. Increase in both frequency and
conductivity only slightly decreases L1: their change of six
orders of magnitude causes a two-fold decrease at most.

The shunt conductance G depends on the insulation mate-
rial (Johnson and Graham, 2003), and is 10–11 S/m for
geophysical wires with intact insulation.

In order to check the above model, it is reasonable to
compare first the model predictions with the responses
measured at the midpoint of the wire perimeter (Fig. 2). The
point x = P/2 was chosen because it was the point of maximum
amplitude of the basic current standing waves. The wire
inductance and resistance were estimated with (17) and (18)

taking into account the skin effect in the wire and in the earth.
According to VES and TEM data, the earth to depths of
200–250 m corresponds to a uniform half-space with resistiv-
ity ρ of a few hundreds of Ohm⋅m. The model curve in Fig.
8 was obtained for ρ = 500 Ohm⋅m.

As mentioned above, the capacitance C depends on many
factors which are unknown a priori and elude precise estima-
tion. The only possible solution is thus to assume some
reasonable C value on the basis of (14) and then to improve
it if necessary, i.e., it is a parameter to be fitted. For the case

of Fig. 8 it was assumed to be C = 4.7⋅10−11 F/m.
The curve in Fig. 8 is a result of summation of 3000 terms

of series (13), with a 1 ms period T of current pulses.
Although the measured and computed data are in a general

agreement, the oscilaltion periods and attenuation rates differ
notably. The period misfit, not very large, can be further
reduced by fitting the capacitance. The amplitude of both
experimental and model current oscillations decays exponen-
tially, but oscillating current attenuates much faster in real
loops than it is predicted by the loop model in the form of
two identical transmission lines. Unlike period fitting, the case
of attenuation is more complex for the lack of adjustable
parameters in the model which would change the attenuation
rate of the current standing waves. Mind that the resistance
added due to the earth skin effect is independent of the earth
resistivity (see above). The actual height of the wire above
the ground likewise causes no influence on its resistance and
inductance. Inductance, though depending on earth’s resistiv-
ity (Fig. 7, c), cannot be used as a fitting parameter as the
dependence is too weak.

Therefore, the chosen loop model appears to miss some
essential point of the system though giving reasonable predic-
tions. Which is this missing point?

Remember that the loop was assumed to be presented as a
symmetrical combination of two identical transmission lines
(Fig. 2, b, c). The point x = P/2 has the potential of the earth,
i.e., same as at x = 0, and the processes in the two loop halves
are thus expected to be independent of each other. The
question is how far they are actually independent?

Fig. 8. Measured (1) and model (2) current oscillations at wire midpoint (x =
P/2). Model oscillations computed with regard to effect of magnetic field of
image current (Fig. 7, a) and skin effect in wire.
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See two transmission lines AB and CD in Fig. 9, each
consisting of a wire and the underlying ground. Small bold
circles mark the points where the wire is grounded; the input
current sources are not shown for the sake of simplicity
(Fig. 2, b).

Consider, for instance, the line AB on the left. Its
per-unit-length parameters were calculated with regard to the
effect of the underlying earth. There is forward current in the
wire and the image return current through the earth, which
makes up a closed circuit Γ1. The magnetic flux produced by
the image current is added to the wire magnetic flux to change
its self inductance and self resistance. The wire inductance
and resistance, with regard to skin effect in the earth and in

the wire, are L1
AB and R1

AB, respectively. In the same way,
forward current in the line CD returns through the earth along
CC′D′D thus making the closed circuit Γ2. With the magnetic
field induced by the current along this circuit, the wire

inductance and resistance are L1
CD and R1

CD. For identical lines

and symmetrical earth L1
AB = L1

CD = L1 and R1
AB = R1

CD = R1.
In calculations for Fig. 8, the two lines were considered

separately. However, if the lines are closely spaced, the
circuits interact through the mutual inductance M12. This
inductive interaction should be included as the respective
correction to the complex resistance of each line and, of
course, of the loop as a whole.

Now imagine that the spacing between the lines becomes
smaller, i.e., the point A approaches C and B approaches D.
As the lines meet at these points, there appears a closed
horizontal loop with the clockwise current I. At the same time,
the earth currents, meeting at A′, C′ and B′, D′ make an image
closed loop with counterclockwise current along it. This is
apparently the response induced in the loop ABDC on the
surface by the magnetic field of the image current A′B′D′C′
that is responsible for the Γ1-Γ2 mutual inductance correction
to the loop complex resistance. Thus, one has to add L2 and
R2 to L1 and R1 in (17) and (18).

The inductance L2 and the resistance R2 produced in the
loop laid on the surface by the Γ1-Γ2 mutual inductance were

estimated using an equation for the self-impedance Z
.

2 of a
circular loop of the radius a laid at the height h above a
uniform half-space of the conductivity σ, with current in it of
the angular frequency ω (Sobolev and Shkarlett, 1967):

Z
.

2 = −6⋅10−7⋅ωR

β2
e−3h/R 

3 − √9 + 4jβ2

2
, (19)

where β = a√ωσµ0 .

Correspondingly, the active resistance R2 is

R2 = 
ReZ
.
2

P
, (20)

and the inductance L2 is

L2 = 
ImZ
.
2

jωP
. (21)

It is noteworthy that (19) was obtained for a circular loop
while the aim was to account for square loop transients.
Equation (19) was applied presuming a known dependence of
the loop self-impedance on the loop area. So, the self-imped-
ance of a circular loop was calculated with its radius a chosen
such that the loop were equal in area to a square loop of the
side A: a = A/√π . For instance, for the 200 × 200 m2 loop, the
radius of the equivalent loop is 112.8 m ≈ 113 m.

See Figure 10 for frequency dependences of R2 and L2,
those of earlier found R1(f) and L1(f) (Fig. 7, b, c), and total
resistance R and inductance L with regard to (i) interaction of
each loop half with its image current, (ii) their mutual
inductance, and (iii) skin effect in the wire.

Taking into account the interaction of the two transmission
lines (Fig. 9), at least with (19), appears to cause only slight
changes to their parameters (Fig. 10). To see what has actually
happened, the plots of current measured at three loop points
(Fig. 4) are superposed in Fig. 11 with the computed
dependences I(t) in which L2 and R2 found according to (20)
and (21) are added to the previously obtained inductance (L1)
and resistance (R1). Then it becomes obvious that the mutual
inductance correction improves substantially the fit between
the measured and computed current attenuation rates.

Discussion

It is pertinent to detail some features of the above model
and modeling results. Equation (19) was applied with an
assumption which needs a comment. At high frequencies a
loop is a distributed circuit, and at early times the current
changes along the loop wire (see above and also Helwig and
Kozhevnikov, 2003; Kozhevnikov, 2006; Kozhevnikov and
Nikiforov, 1998, 2000). However, (19) was derived for a loop
simulated by a lumped circuit, i.e., neglecting the delay in the
wire–earth system. This assumption ensures an accuracy
acceptable in engineering applications within a bandwidth
corresponding to the quasi-static approximation (Sobolev and
Shkarlett, 1967), but it is never possible to estimate a priori
how much the inductance and resistance caused by mutual

Fig. 9. Two transmission lines. There are two kinds of current in each line:
forward current along the wire and its image in the earth flowing in the opposite
sense. Transmission lines can be treated independently if largely spaced but,
when approaching, they make up a system in which they experience mutual
inductance to be taken into account in analysis.
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inductance between two halves of a real loop (Fig. 9) would
differ from those calculated with (20) and (21). The only thing
one can do with this is to use (20) and (21) as some
approximation and to look at the result, which appears to be
more than satisfactory.

Note that if one tried to account for the attenuation of
current oscillations uniquely with the resistance added to the
loop self-resistance due to mutual inductance between its
halves, the calculated decay would be three times faster than
the measured one. Thus, at the loop resonance frequency two

thirds of the induced resistance is that of the transmission line
consisting of the wire and the underlying ground.

When comparing the experimental and theoretical re-
sponses in Fig. 11, a, one may wonder why the current turn-off
measured at the input (x = 0) takes 5 µs instead of being
instant as predicted by the theory. There must be several
reasons. They are, first, the features of the electronic switch
which disconnects the loop input from a battery in a very short
but finite time; second, common-mode capacitive pickup at
the input of the oscilloscope employed to record the signals.

Fig. 10. Frequency-dependent resistance (a) and inductance (b). 1. Without regard to mutual inductance between lines (R1, L1). 2. Due to mutual inductance between
lines (R2, L2). 3. With regard to all effects (R, L).

Fig. 11. Measured and model current oscillations at different points of loop wire. Unlike those in Fig. 8, model data are computed with regard to mutual inductance
between lines. Symbols same as in Fig. 8.
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This pickup has the largest effect on measurements near the
loop input where voltage is in antinode (Fig. 3, b); third,
approaching the loop input where additional devices are
connected, one may expect ever greater departure of the
wire–earth system from the chosen uniform transmission-line
model. Exhaustive analysis of the wire–earth system requires
general methods of which the finite-element method (Wang
and Liu, 2001) is likely the most promising one.

Correction for the mutual inductance of two loop lines
provides a better fit between measured and computed attenu-
ations of the current standing waves and, more so, accounts
for the known (Vakhromeev et al., 1991) dependence of
characteristic decay time on earth’s resistivity. As noted above,
the attenuation of loop current depends most strongly on
resistance due to the skin effect in the earth (Fig. 10), which,
however, is independent of earth resistivity. On the other hand,
the additional resistance caused by the interaction of two lines,
though contributing less to the linear wire resistance, does
depend on earth’s resistivity, and this dependence, at least in
principle, allows one to apply inversion of loop current
oscillations for estimating the resistivity of shallow ground.
Not going far into details of the inversion issue, note that the
best fit between theory and measurements for the data of
Fig. 10 was at ρ = 500 Ohm⋅m. This value found through
fitting to range between 102 and 103 Ohm⋅m is close to the
local resistivity estimated from VES and TEM data.

According to fitting results, ρ controls both the attenuation
and the period of current oscillations. This is because earth’s
resistivity influences current distribution in the earth and thus
the wire inductance L which, in turn, affects the velocity of
EM waves in the wire–earth transmission line and, correspond-
ingly, the frequency of the current and voltage standing waves
in each line after it has been switched-off from the battery.

For period one may use another fitting parameter besides
ρ, the capacitance C of the line which, along with inductance,
controls the propagation constant influencing the velocity of
EM waves in the line. Mind that the wire capacitance depends
on many hardly predictable factors. The “best” C obtained by
fitting is rather an effective parameter impossible to calculate
a priori. There is another point to mention in this respect.
Before applying the mutual inductance correction, capacitance
fitting was tried to improve the period fit between the
measured and computed transients, which was successful
either at early or at late times but never throughout the time
range. The period fit at all times was achieved after the
correction (Fig. 11, b, c), which also provided account for the
measured current attenuation rate.

Thus, the per-unit-length wire parameters that enter equa-
tion (9) should include the correction Z

.
2 for the mutual

inductance of the loop halves.

Conclusions

At early times, the wire of an ungrounded horizontal loop
in combination with the underlying shallow subsurface be-

haves as a transmission line in which current turn-off is
governed by the wave equation.

The current turn-off in the wire–earth system can be
simulated as a superposition of waves of different wavelengths
and frequencies that travel in forward and back directions and
reflect from the loop ends and from the midpoint.

Shunting the loop by a resistor with its resistance equal to
the double characteristic impedance of the wire–earth trans-
mission line provides matching for current waves traveling
from the midpoint to the loop input. As a result, no ringing
arises and the relaxation time becomes equal to the half-period
of current oscillations in the loop at its resonant frequency.

An ungrounded horizontal loop is asymmetrical at early
times, and its primary magnetic field differs from that
predicted by the conventional EM methods.

The per-unit-length parameters of the wire–earth line (R,
L, C, and G) show an intricate dependence on earth’s
resistivity and frequency (and/or time), which makes solving
the wave equation quite difficult.

Current turn-off in an ungrounded horizontal loop was
explored applying the theory of transmission lines by simulat-
ing the loop as a symmetrical combination of two identical
transmission lines with shorted outputs.

With this approach, the problem becomes easy to solve
even in the case of frequency and resistivity dependence of
the line parameters. Modeling was performed in the frequency
domain with subsequent transformation into the time domain.

Comparison of measured and computed decays of current
standing waves in the loop showed that good fit requires taking
into account (1) interaction of each transmission line in the
loop with its own image current, (2) mutual inductance of the
two lines, and (3) skin effect in the wire.

As a result of mutual inductance, the transmission lines
have their parameters—and, hence, the parameters of the
whole loop—depending on earth’s conductivity, which, at
least in principle, may allow one to infer the earth resistivity
from loop high-frequency responses.

The manuscript profited much from constructive criticism
by the reviewers A.K. Zakharkin and V.S. Mogilatov.
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