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Modeling electromagnetic field in shelf areas
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Abstract

Water salinity at shallow sea depths in shelf areas changes with depth, which causes respective conductivity changes. We discuss algorithms
for computing monochromatic electric fields using the vector finite-element method with different realizations of depth dependence of
conductivity. The algorithms have been applied to compute vertical conductivity patterns and to explore its influence on the electric field
measured on the surface.
© 2009, IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.
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Introduction

Progress in marine geophysics is associated with the use
of ever more sophisticated models in data processing. How-
ever, all models commonly assume invariable conductivity of
sea water, though water at shallow sea depths in shelf areas
is known to change in conductivity with depth as a result of
salinity and temperature changes. The depth dependence of
conductivity is specific to each area but is most often linear
(Doronin, 1992; Egorov, 1974; Mikhailov, 1998; Mikhailov
and Povalishnikova, 1999). See Fig. 1 for generalized salin-
ity-conductivity relationships according to UNESCO data (The
Practical Salinity Scale, 1981).

We explore the patterns of conductivity as a function of
salinity and temperature using the example of the Black Sea.
The water column in the Black Sea consists of two poorly
mixing layers (Vershinin, 2007). The upper 100 m layer is fed
from freshwater river input while the more saline and denser
water below 100 m comes from the Sea of Marmara along
the bottom of the Bosporus Strait (lower Bosporus current)
and flows depthward. That is why the salinity of bottom water
in the Black Sea reaches 30‰. Salinity and conductivity
change in different ways with depth: salinity increases rapidly
from 17 to 21‰ from the surface to 50–100 m, and
conductivity first grows from ∼1.75 to 2.1 S/m and then
increases uniformly to 2.6 S/m as far as the bottom. In this
study vertical conductivity patterns are investigated using the

vector finite-element algorithms to simulate monochromatic

electric fields.

Mathematical model

Maxwell’s equations for the electromagnetic field are

(Balandin and Shurina, 2001)
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rot E = −µ∂H
∂t

,

rot H = ε∂E
∂t

 + σ(x, y, z)E + je,

div(µH) = 0,
div(εE) = ρ,

(1)

where E and H are the electric (V/m) and magnetic (A/m)
fields, respectively, je is the eddy current density (A/m2), ε is
the permittivity (F/m), µ is the magnetic permeability (H/m),
ρ is the charge density (C/m3), σ(x, y, z) is the conductivity
(S/m), which is a function of space coordinates in the general
case.

The second-order equation for the electric field vector E is

rot
1
µrot E = − ∂

∂t
rot H .

Then, with regard to the second equation in system (1), it
becomes

rot
1
µrot E = −ε∂2E

∂t2
 − σ(x, y, z)∂E

∂t
 − 

∂je

∂t
.

Let je and E be expressed as

je = jee−iωt,

E = Ee−iωt = (Ere + iEim)e−iωt,

where i is an imaginary unit; superscripts re and im mark real
and imaginary parts, respectively.

Thus, the behavior of the monochromatic electric field E
in time domain is described by the Helmholz vector equation
as

rot
1
µrot E − k2E = iωje, (2)

where k2 = iωσ(x, y, z) + ω2ε is the square wave number, and
the real part of je is nonzero.

The law of free charge conservation is

div((σ + iωε)E) = 0. (3)

We consider a problem with depth-dependent conductivity
σ = σ(z). In this case, the charge conservation law of (3)
becomes

∂σ(z)
∂z

Ez + (σ(z) + iωε)divE = 0. (4)

If the electric field is generated by a current loop (induction
source),

div(je) = 0. (5)

The first term in (4) corresponds to an additional charge
due to depth-dependent conductivity change (the necessary
condition for this is a nonzero z component of the electric
field).

The conditions for continuity of the electric field E at the
interfaces Γi,j between different conductivity domains imply

that Ω =∪ 
i

Ωi, where each Ωi has its own εi, µi, and σi and

can be written as

[n×E]Γ = 0,

[n⋅(σ(z) + iωε)E]Γ = 0.

The uniform boundary conditions at the interface are

n × E |∂Ω = 0.

Vector variation formulation

Let Ω be a three-dimensional physically inhomogeneous
domain with the Lipshitz-continuous boundary ∂Ω. We intro-
duce the Hilbert spaces

�(Ω) = {v|v ∈ �2(Ω)},

where �2(Ω) is the space of the complex-valued or real

functions integrated over the set Ω with the square

�(rot; Ω) = {v|v ∈�(Ω), rot v ∈ �(Ω)} ⊂ �(Ω),

�0(rot; Ω) = {v|v ∈ �(rot; Ω),n×v|∂Ω = 0},

the norm

||u||rot, Ω
2  = ∫u

Ω
⋅u∗dΩ + ∫rot

Ω
 u⋅rot u∗dΩ

and the scalar product

(u, v) = ∫u
Ω

⋅vdΩ.

The Galerkin variation formulation for (2) is to find

E ∈ �0(rot; Ω) such that for ∀V∗ ∈ �0(rot; Ω),




1
µ rot E, rot V∗



 − (k2E, V∗) = i(ωje, V∗). (6)

For the space �0(rot; Ω), there exists the embedding
property that

grad φ ∈ �0(rot; Ω),  ∀φ ∈ �0
1(Ω). (7)

According to (7) we may use grad φ for V* where

φ ∈ �0
1(Ω). Then, (6) becomes




1
µ rot E, rot grad φ



 − (k2E, grad φ) =

 i(ωje, grad φ), ∀φ ∈ �1(Ω).
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Taking into account (5) and zero rot grad φ,

((ω2ε + iωσ(z))E, grad φ) = 0, ∀φ ∈� 1(Ω). (8)

The scalar product of (3) and V∗ = grad φ is

∫(
Ω

ω2ε + iωσ(z))E⋅grad φ dΩ =

 ∫div
Ω

[(ω2ε + iωσ(z))E]φ dΩ, (9)

where ∀φ ∈ �0
1(Ω).

It follows from (9) that equation (8) is the variation
equivalent of the conservation law of (4). Thus, the variation
solution (6) satisfies the charge conservation law in weak
sense.

Choice of finite elements and local vector 
basis functions

The model domain can be simulated by a hexahedral or a
tetrahedral finite element mesh (Nechaev and Shurina, 2005),
with basis edge functions in its cells associated with the edges

of the mesh in the finite-dimension subspace �h(rot; Ω) ⊂
�(rot; Ω). The choice of hexahedral finite elements (Fig. 2, a)
is optimum for domains of a simple geometry. The respective
solutions with a well-structured hexahedral mesh can use basis
functions of low orders, and iteration is of good convergence.
However, domains of complex geometries require the use of
deformed meshes (Solin, 2002) instead of the standard ones.

Below we consider both hexahedral and tetrahedral finite
element meshes.

The hexahedral basis functions are obtained using the
auxiliary functions

ψx
± = 

1
lx




−+ xc + 

lx
2

 ± x 




 , 

ψy
± = 

1
ly




−+ yc + 

ly
2

 ± y 




 ,

ψz
± = 

1
lz




−+ zc + 

lz
2

 ± z 




 ,

where {xc, yc, zc} is the center of the hexahedron and lx, ly,
lz are the lengths of its edges.

The hexahedral basis functions (space �h(rot; Ω); 1)) or
first-order vector basis functions are

N1 = (ψy
−ψz

−)i,

N2 = (ψy
+ψz

−)i,

Fig. 2. Local numbering of edges (ei) and vertices (nj) of hexahedral (a) and tetrahedral (b) finite elements.

Fig. 3. Matrix for hexahedral mesh.
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N3 = (ψy
−ψz

+)i,

N4 = (ψy
+ψz

+)i,

N5 = (ψx
−ψy

−)j,

N6 = (ψx
−ψz

+)j,

N7 = (ψx
+ψz

−)j,

N8 = (ψx
+ψz

+)j,

N9 = (ψx
−ψy

−)k,

N10 = (ψx
+ψy

−)k,

N11 = (ψx
−ψy

+)k,

N12 = (ψx
+ψy

+)k,

where i, j, k are the unit vectors in the Cartesian coordinates.
In tetrahedral meshes, the use of low-order basis functions

cannot provide a satisfactory accuracy of the solutions. Then,

we construct the hierarchic basis of the space � h(rot; Ω; 2)
(first-order vector basis functions of type 2) (Nechaev and
Shurina, 2005):

W1 = λ1∇λ2 − λ2∇λ1, 

W2 = λ1∇λ3 − λ3∇λ1,

W3 = λ1∇λ4 − λ4∇λ1, 

W4 = λ2∇λ3 − λ3∇λ2,

W5 = λ2∇λ4 − λ4∇λ2, 

W6 = λ3∇λ4 − λ4∇λ3,

W7 = λ1∇λ2 + λ2∇λ1, 

W8 = λ1∇λ3 + λ3∇λ1,

W9 = λ1∇λ4 + λ4∇λ1, 

W10 = λ2∇λ3 + λ3∇λ2,

W11 = λ2∇λ4 + λ4∇λ2, 

W12 = λ3∇λ4 + λ4∇λ3,

where λi are the 3D barycentric coordinates with respect to

the vertices of the tetrahedron. The first six basis functions
are associated with the tetrahedron edges and the other six
functions are associated with their centers.Fig. 5. Modeling layout.

Fig. 4. Matrix for tetrahedral mesh, obtained without (a) and with (b) Cuthill–McKee algorithm.
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Discrete variation formulation

In the discrete variation formulation we approximate the
elements of the space �(rot; Ω) by elements of the discrete

half-space � h(rot; Ω). Then, the discrete equivalent of (6) is




1
µrot Eh

re, rot Vh
1∗


 Ω

 − ω2εEh
re, Vh

1∗
 Ω

 +


ωσ(z)Eh

im, Vh
1∗

 Ω
 = 0,

Fig. 6. Real part of electric field Ex (a, b, e, f); Ez (c, d, g, h). Seawater layer is assumed to have its conductivity uniform in a, c, e, g and gradient in b, d, f, h.
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


1
µrot Eh

im, rot Vh
2∗


 Ω

 − ω2εEh
im, Vh

2∗
 Ω

 −


ωσ(z)Eh

re, Vh
2∗

 Ω
 = ωje, Vh

2∗
 Ω

.

For the obtained discrete subspaces, there exists the
embedding property that

φh ∈ �h(grad; Ω) → gradφh ∈ �h(rot; Ω).

That is why the approximation of Eh satisfies the charge
conservation law in weak sense:

(ωεEh
re − σEh

im), grad φh) = 0, ∀φh ∈ �0
h(grad; Ω),

(−ωεEh
om − σEh

re), grad φh) = 0, ∀φh ∈ �0
h(grad; Ω).

We are to find the solution in the subspace �0
h(rot; Ω) for

the real and imaginary parts of E = Ere + iEim. Written as a

series with respect to all basis functions Nj ∈ �0
h(rot; Ω), they

are

Ere = ∑αj
j

Nj, E
im = ∑βj

j

Nj. (10)

Thus the solution of variation problem (6) becomes equiva-
lent to that with respect to the weights (αj, βj) in series (10)








A
^

 + M
^

ε

−M
^

σ

  
M
^

σ

A
^

 + M
^

ε







 = 


 
α
β 




 = 




 0
F 




 . (11)

The elements of the matrices A
^

, M
^

ε, M
^

σ and the vector F
in the right-hand side of (11) are given by

{A
^

}ij = 
1
µ∫rot

Ω
 Njrot Ni dΩ,

{M
^

ε}ij = −ω2ε∫Nj
Ω

Ni dΩ,

{M
^

σ}ij = ω∫σ
Ω

(z)NjNi dΩ,

Fig. 7. Patterns of x (a) and z (b) components of electric field E in sections y = 12.5 m and z = 19.5 m.
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{F}i = ω∫Ni
Ω

je dΩ.

The obtained system (11) of linear algebraic equations
(SLAE) is asymmetrical. We tested several standard iteration
methods for solving asymmetrical SLAE, such as BiCGStab
(BiConjugate gradient Stabilized), CGS (Conjugate gradient
Squared), TFQMR (Transpose Free Quasi-Minimal Residual),
GMRES (Generalized Minimum Residual), and MGCR
(Modified Generalized Conjugate Residual), and finally se-
lected the GMRES method (Saad and Schultz, 1986) which
showed the best efficiency. The SLAE matrix is well ordered
for a hexahedral mesh (Fig. 3), but in the case of a
non-structured tetrahedral mesh, the resulting matrix (distribu-
tion of nonzero elements) is strongly disordered (Fig. 4, a).
We structured the SLAE matrix using a modified Cuthill–
McKee (Cuthill and McKee, 1969) algorithm for tetrahedral

mesh edge renumbering (Fig. 4, b). Inasmuch as attempts to
speed up the computing process using standard precondition-
ing routines such as the Jacoby overrelaxation, SSOR (Sym-
metric Successive Overrelaxation), or ILU (Incomplete LU
Factorization) had little effect, we applied iteration combined
with the multiplicative Schwartz algorithm. For details see
(Nechaev and Shurina, 2005).

Numerical modeling

We investigated the behavior of depth-dependent conduc-
tivity by simulating the monochromatic electric field in a
domain consisting of three subdomains: air (vanishing con-
ductivity), seawater (depth-dependent conductivity), and un-
derlying sediments. See Fig. 5 for the sizes of the subdomains
and the conductivity conditions.

Let the electric field be generated by a positive (A) and a
negative (B) electrodes on the seawater surface, at a frequency
of 100 Hz, with 1 A feeding current and the source electrodes
spaced at 25 m, or slightly more than the sea depth.

The finite element mesh can be hexahedral or tetrahedral.
In the latter case, where there are fewer edges, one can make
the mesh denser in the regions where the field is strongly
variable (near the sources) or sparser where the field is more
stable (far from the sources). For instance, in the model of
Fig. 5 the total number of edges was 320,866 for a hexahedral
mesh and 156,705 (or about twice less) for a tetrahedral mesh.
The tetrahedral mesh is commonly mirror symmetrical about
the plane that divides in half the model domain along the x
axis and is equidistant from the source electrodes, which is
necessary for generating identical meshes in the case of
geometrically identical sources. 

Assume that in the Cartesian coordinates the plane xOy
coincides with the sea surface and the z axis is directed
downward.

Fig. 9. Patterns of Ez
re  component in section y = 12.5 m, without (a) and with (b) a thin conductor.

Fig. 8. Model including an embedded low-conductivity object.
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Forward modeling of marine resistivity survey data is
commonly performed using layered models with constant
depth-independent conductivities of seawater and other layers.
This choice is due to (i) the existence of several workable
forward methods for layered models and (ii) the impossibility

to take into account all features of the conductivity pattern
with a function dependence.

We assume the conductivity to be 5 S/m at the sea surface
and 7 S/m near the bottom and the dependence σ(z) to be
linear:

Fig. 10. Patterns of Ex
re (a), Ey

re (b), and Ez
re (c) components in section y = 12.5 m.
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σ(z) = σ0



1 + 

z
50




 ,

where σ0 = 5 S/m.

Below we compare modeling results for two models, with
the upper layer having either gradient depth-dependent or
uniform conductivities (in the latter case the equivalent mean
conductivity is σ = 6 S/m).

The images of Fig. 6 are for two real components of the
electric field in the section y = 12.5 m (Fig. 6, a–d) and in
the plane z = 19.5 m (Fig. 6, e–h) for the uniform (Fig. 6, a,
c) and gradient (Fig. 6, b, d) conductivities of seawater.

The patterns for the horizontal field component agree well
within the upper seawater layer, the difference being in a
higher field intensity and a greater contrast between the
positive and negative field parts in the gradient layer. The
patterns for the bottom layer differ notably, mainly because
there is a distributed charge in the gradient layer with the

density δ ∼ 
∂σ
∂z

Ez which is absent from the layer of constant

conductivity. Below the interface there is a compensating
negative volumetric charge.

The orientation of curves in Fig. 7, a, b indicates the
existence of a secondary source (a volumetric charge) in the
gradient layer (near its bottom), the electrodes being the

primary source. The distribution of volumetric sources at 
∂σ
∂z

showing low lateral variations depends on the distribution of
the vertical field component, which is controlled, in turn, by
the configuration of the source electrodes. Thus, by changing
the configuration of source electrodes and their eddy currents
one can manage the secondary sources that are located much
closer to the study domain and have quite different geometric
attenuation patterns.

Another numerical experiment was to investigate how a
nonconducting object can influence the electric field and

estimate the possibility for its detection from surface meas-
urements.

Let a 10 m × 10 m × 10 m low-conductivity (σ = 0.01 S/m)
cube be located at a depth of 50 m below the sea surface
(Fig. 8). Its equidistant position from the sides of the model
domain reduces the computational expenses but is almost
never the case in reality. The electric field is measured at z0 =
0.2 m below the sea surface.

First we compare the numerical results in models without
perturbation consisting of two and three layers (without and
with a thin conductor, respectively). The field components

Ex
re, Ey

re, and Ez
re are very similar in this case, but differ at

greater depth, especially in Ez
re (Fig. 9). Thus, the effect of a

thin conductor cannot be neglected.
Figure 10 shows distortions of different field components

(Ere), with and without the embedded object, and the surface
field changes caused by the object (Fig. 11).

The presence of a low-conductivity object obviously influ-

ences the Epattern
re  (see the antisymmetry disappearing on the

left and on the right of the plane x = 25.5 m) and, moreover,
shows up as increase in all three field components measured
on the surface (Figs. 10 and 11).

Conclusions

We performed numerical experiments for seawater with
conductivities assumed either to be a constant mean or to
change linearly with depth. The use of algorithms that account
for depth dependence of conductivity indicated the presence
of volumetric charges at the interface between the seawater
and the underlying rocks. The results may be useful in
developing new processing methods marine resistivity survey
data.

Fig. 11. Maximum Ex
re (a), Ey

re (b), and Ez
re (c) components in section y = 12.5 m, without (Ex1, Ey1, Ez1) and with (Ex2, Ey2, Ez2) embedded object.
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